Discontinuous Gradient Constraints and the Infinity Laplacian

被引:10
|
作者
Juutinen, Petri [1 ]
Parviainen, Mikko [1 ]
Rossi, Julio D. [2 ]
机构
[1] Univ Jyvaskyla, Dept Math & Stat, POB 35, Jyvaskyla 40014, Finland
[2] Univ Alicante, Dept Anal Matemat, Ap Correos 99, E-03080 Alicante, Spain
基金
芬兰科学院;
关键词
VISCOSITY SOLUTIONS; LIPSCHITZ EXTENSIONS; UNIQUENESS; EQUATIONS; NORM;
D O I
10.1093/imrn/rnv214
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Motivated by tug- of-war games and asymptotic analysis of certain variational problems, we consider the following gradient constraint problem: given a bounded domain Omega subset of R-n, a continuous function f : partial derivative Omega -> R, and a nonempty subset D subset of Omega, find a solution to {min {Delta(infinity)u,vertical bar Du vertical bar - chi(D)} = 0 in Omega u = f on partial derivative Omega, where Delta(infinity) is the infinity Laplace operator. We prove that this problem always has a solution that is unique if (D) over bar = (intD) over bar. If this regularity condition on D fails, then solutions obtained from game theory and L-p-approximation need not coincide.
引用
收藏
页码:2451 / 2492
页数:42
相关论文
共 50 条
  • [31] On aspects of the normalized Infinity Laplacian on Finsler manifolds
    Mohammed, Ahmed
    Pessoa, Leandro F.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2024, 246
  • [32] Some properties of the ground states of the infinity Laplacian
    Yu, Yifeng
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2007, 56 (02) : 947 - 964
  • [33] The infinity Laplacian, Aronsson's equation and their generalizations
    Barron, E. N.
    Evans, L. C.
    Jensen, R.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 360 (01) : 77 - 101
  • [34] A weighted eigenvalue problem of the biased infinity Laplacian*
    Liu, Fang
    Yang, Xiao-Ping
    NONLINEARITY, 2021, 34 (02) : 1197 - 1237
  • [35] An adaptive finite element method for the infinity Laplacian
    Lakkis, Omar
    Pryer, Tristan
    Lecture Notes in Computational Science and Engineering, 2015, 103 : 283 - 291
  • [36] On the Aleksandrov–Bakelman–Pucci estimate for the infinity Laplacian
    Fernando Charro
    Guido De Philippis
    Agnese Di Castro
    Davi Máximo
    Calculus of Variations and Partial Differential Equations, 2013, 48 : 667 - 693
  • [37] Solutions to an inhomogeneous equation involving infinity Laplacian
    Liu, Fang
    Yang, Xiao-Ping
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (14) : 5693 - 5701
  • [38] Solutions for Equations Involving the Infinity-Laplacian
    da Silva M.F.
    Freire I.L.
    Faleiros A.C.
    International Journal of Applied and Computational Mathematics, 2017, 3 (2) : 395 - 410
  • [39] BERNOULLI FREE BOUNDARY PROBLEM FOR THE INFINITY LAPLACIAN
    Crasta, Graziano
    Fragala, Ilaria
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2020, 52 (01) : 821 - 844
  • [40] Constrained radial symmetry for the infinity-Laplacian
    Greco, Antonio
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2017, 37 : 239 - 248