Discontinuous Gradient Constraints and the Infinity Laplacian

被引:10
|
作者
Juutinen, Petri [1 ]
Parviainen, Mikko [1 ]
Rossi, Julio D. [2 ]
机构
[1] Univ Jyvaskyla, Dept Math & Stat, POB 35, Jyvaskyla 40014, Finland
[2] Univ Alicante, Dept Anal Matemat, Ap Correos 99, E-03080 Alicante, Spain
基金
芬兰科学院;
关键词
VISCOSITY SOLUTIONS; LIPSCHITZ EXTENSIONS; UNIQUENESS; EQUATIONS; NORM;
D O I
10.1093/imrn/rnv214
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Motivated by tug- of-war games and asymptotic analysis of certain variational problems, we consider the following gradient constraint problem: given a bounded domain Omega subset of R-n, a continuous function f : partial derivative Omega -> R, and a nonempty subset D subset of Omega, find a solution to {min {Delta(infinity)u,vertical bar Du vertical bar - chi(D)} = 0 in Omega u = f on partial derivative Omega, where Delta(infinity) is the infinity Laplace operator. We prove that this problem always has a solution that is unique if (D) over bar = (intD) over bar. If this regularity condition on D fails, then solutions obtained from game theory and L-p-approximation need not coincide.
引用
收藏
页码:2451 / 2492
页数:42
相关论文
共 50 条
  • [41] Spectral Gradient Fidelity and Spatial Hessian Hyper-Laplacian Sparsity Constraints for Variational Pansharpening
    Liu, Pengfei
    Li, Yun
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 6086 - 6098
  • [42] HOPF-BIFURCATION AT INFINITY WITH DISCONTINUOUS NONLINEARITIES
    HE, XJ
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES B-APPLIED MATHEMATICS, 1991, 33 : 133 - 148
  • [43] Laplacian smoothing gradient descent
    Stanley Osher
    Bao Wang
    Penghang Yin
    Xiyang Luo
    Farzin Barekat
    Minh Pham
    Alex Lin
    Research in the Mathematical Sciences, 2022, 9
  • [44] Laplacian smoothing gradient descent
    Osher, Stanley
    Wang, Bao
    Yin, Penghang
    Luo, Xiyang
    Barekat, Farzin
    Pham, Minh
    Lin, Alex
    RESEARCH IN THE MATHEMATICAL SCIENCES, 2022, 9 (03)
  • [45] ON THE FIRST EIGENVALUE OF THE STEKLOV EIGENVALUE PROBLEM FOR THE INFINITY LAPLACIAN
    Le, An
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2006,
  • [46] Adjoint Methods for the Infinity Laplacian Partial Differential Equation
    Evans, Lawrence C.
    Smart, Charles K.
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2011, 201 (01) : 87 - 113
  • [47] VISCOSITY SOLUTIONS TO THE INFINITY LAPLACIAN EQUATION WITH STRONG ABSORPTIONS
    Lin, Tao
    Liu, Fang
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2022, 21 (12) : 4251 - 4267
  • [48] PLANAR NORMAL SECTIONS ON ISOPARAMETRIC HYPERSURFACES AND THE INFINITY LAPLACIAN
    Barros, Julio C.
    Sanchez, Cristian U.
    REVISTA DE LA UNION MATEMATICA ARGENTINA, 2014, 55 (02): : 107 - 121
  • [49] Regularity of Viscosity Solutions of the Biased Infinity Laplacian Equation
    Liu, Fang
    Meng, Fei
    Chen, Xiaoyan
    ANALYSIS IN THEORY AND APPLICATIONS, 2022, 38 (04): : 439 - 450
  • [50] Asymptotic estimates of large solutions to the infinity Laplacian equations
    Mi, Ling
    Chen, Chuan
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2024, 75 (02):