Discontinuous Gradient Constraints and the Infinity Laplacian

被引:10
|
作者
Juutinen, Petri [1 ]
Parviainen, Mikko [1 ]
Rossi, Julio D. [2 ]
机构
[1] Univ Jyvaskyla, Dept Math & Stat, POB 35, Jyvaskyla 40014, Finland
[2] Univ Alicante, Dept Anal Matemat, Ap Correos 99, E-03080 Alicante, Spain
基金
芬兰科学院;
关键词
VISCOSITY SOLUTIONS; LIPSCHITZ EXTENSIONS; UNIQUENESS; EQUATIONS; NORM;
D O I
10.1093/imrn/rnv214
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Motivated by tug- of-war games and asymptotic analysis of certain variational problems, we consider the following gradient constraint problem: given a bounded domain Omega subset of R-n, a continuous function f : partial derivative Omega -> R, and a nonempty subset D subset of Omega, find a solution to {min {Delta(infinity)u,vertical bar Du vertical bar - chi(D)} = 0 in Omega u = f on partial derivative Omega, where Delta(infinity) is the infinity Laplace operator. We prove that this problem always has a solution that is unique if (D) over bar = (intD) over bar. If this regularity condition on D fails, then solutions obtained from game theory and L-p-approximation need not coincide.
引用
收藏
页码:2451 / 2492
页数:42
相关论文
共 50 条
  • [21] On asymptotic expansions for the fractional infinity Laplacian
    del Teso, Felix
    Endal, Jorgen
    Lewicka, Marta
    ASYMPTOTIC ANALYSIS, 2022, 127 (03) : 201 - 216
  • [22] A PDE Perspective of the Normalized Infinity Laplacian
    Lu, Guozhen
    Wang, Peiyong
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2008, 33 (10) : 1788 - 1817
  • [23] Optimal Lipschitz extensions and the infinity laplacian
    Crandall, MG
    Evans, LC
    Gariepy, RF
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2001, 13 (02) : 123 - 139
  • [24] Evolution driven by the infinity fractional Laplacian
    del Teso, Felix
    Endal, Jorgen
    Jakobsen, Espen R.
    Luis Vazquez, Juan
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2023, 62 (04)
  • [25] Infinity Laplacian equations with singular absorptions
    Araujo, Damiao J.
    Sa, Ginaldo S.
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2022, 61 (04)
  • [26] AN EIGENVALUE PROBLEM FOR THE INFINITY-LAPLACIAN
    Bhattacharya, Tilak
    Marazzi, Leonardo
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2013,
  • [27] Tangent lines of contact for the infinity Laplacian
    Yifeng Yu
    Calculus of Variations and Partial Differential Equations, 2004, 21 : 349 - 355
  • [28] AN ANISOTROPIC INFINITY LAPLACIAN OBTAINED AS THE LIMIT OF THE ANISOTROPIC (p, q)-LAPLACIAN
    Perez-Llanos, Mayte
    Rossi, Julio D.
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2011, 13 (06) : 1057 - 1076
  • [29] REMARKS ON THE MAXIMUM PRINCIPLE FOR THE infinity-LAPLACIAN
    Katzourakis, Nikos
    Manfredi, Juan
    MATEMATICHE, 2016, 71 (01): : 63 - 74
  • [30] Reaction-diffusion equations for the infinity Laplacian
    Diehl, Nicolau M. L.
    Teymurazyan, Rafayel
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 199