Tangent lines of contact for the infinity Laplacian

被引:0
|
作者
Yifeng Yu
机构
[1] University of California at Berkeley,Department of Mathematics
关键词
Maximal Principle; Quantitative Estimate; Tangent Line; Unique Continuation; Strong Maximal Principle;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we will prove a “tangent line touching” condition for supersolutions of the infinity Laplacian. This is a kind of quantitative estimate for the failure of the strong maximal principle. When n = 2, this also implies the failure of the principle of unique continuation. In addition, we will establish a theorem of continuation.
引用
收藏
页码:349 / 355
页数:6
相关论文
共 50 条
  • [1] Tangent lines of contact for the infinity Laplacian
    Yu, YF
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2004, 21 (04) : 349 - 355
  • [2] A HOLDER INFINITY LAPLACIAN
    Chambolle, Antonin
    Lindgren, Erik
    Monneau, Regis
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2012, 18 (03) : 799 - 835
  • [3] Analysis and Solution of Gauge Corner Contact on Tangent of Conventional Railway Lines
    Wang J.
    Shen G.
    Ding J.
    Jiang J.
    Tongji Daxue Xuebao/Journal of Tongji University, 2019, 47 (09): : 1326 - 1333
  • [4] On tangent cones at infinity of algebraic varieties
    Cong-Trinh Le
    Tien-Son Pham
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2018, 17 (08)
  • [5] Lipschitz continuity of tangent directions at infinity
    Dinh, Si Tiep
    Pham, Tien-Son
    BULLETIN DES SCIENCES MATHEMATIQUES, 2023, 182
  • [6] A Symmetry Problem for the Infinity Laplacian
    Crasta, Graziano
    Fragala, Ilaria
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (18) : 8411 - 8436
  • [7] The Gelfand problem for the Infinity Laplacian
    Charro, Fernando
    Son, Byungjae
    Wang, Peiyong
    MATHEMATICS IN ENGINEERING, 2022, 5 (02): : 1 - 28
  • [8] On the evolution governed by the infinity Laplacian
    Petri Juutinen
    Bernd Kawohl
    Mathematische Annalen, 2006, 335 : 819 - 851
  • [9] The infinity Laplacian with a transport term
    Lopez-Soriano, Rafael
    Navarro-Climent, Jose C.
    Rossi, Julio D.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 398 (02) : 752 - 765
  • [10] On the evolution governed by the infinity Laplacian
    Juutinen, Petri
    Kawohl, Bernd
    MATHEMATISCHE ANNALEN, 2006, 335 (04) : 819 - 851