Tangent lines of contact for the infinity Laplacian

被引:0
|
作者
Yifeng Yu
机构
[1] University of California at Berkeley,Department of Mathematics
关键词
Maximal Principle; Quantitative Estimate; Tangent Line; Unique Continuation; Strong Maximal Principle;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we will prove a “tangent line touching” condition for supersolutions of the infinity Laplacian. This is a kind of quantitative estimate for the failure of the strong maximal principle. When n = 2, this also implies the failure of the principle of unique continuation. In addition, we will establish a theorem of continuation.
引用
收藏
页码:349 / 355
页数:6
相关论文
共 50 条
  • [41] The infinity Laplacian, Aronsson's equation and their generalizations
    Barron, E. N.
    Evans, L. C.
    Jensen, R.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 360 (01) : 77 - 101
  • [42] A weighted eigenvalue problem of the biased infinity Laplacian*
    Liu, Fang
    Yang, Xiao-Ping
    NONLINEARITY, 2021, 34 (02) : 1197 - 1237
  • [43] An adaptive finite element method for the infinity Laplacian
    Lakkis, Omar
    Pryer, Tristan
    Lecture Notes in Computational Science and Engineering, 2015, 103 : 283 - 291
  • [44] On the Aleksandrov–Bakelman–Pucci estimate for the infinity Laplacian
    Fernando Charro
    Guido De Philippis
    Agnese Di Castro
    Davi Máximo
    Calculus of Variations and Partial Differential Equations, 2013, 48 : 667 - 693
  • [45] Solutions to an inhomogeneous equation involving infinity Laplacian
    Liu, Fang
    Yang, Xiao-Ping
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (14) : 5693 - 5701
  • [46] Solutions for Equations Involving the Infinity-Laplacian
    da Silva M.F.
    Freire I.L.
    Faleiros A.C.
    International Journal of Applied and Computational Mathematics, 2017, 3 (2) : 395 - 410
  • [47] BERNOULLI FREE BOUNDARY PROBLEM FOR THE INFINITY LAPLACIAN
    Crasta, Graziano
    Fragala, Ilaria
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2020, 52 (01) : 821 - 844
  • [48] Constrained radial symmetry for the infinity-Laplacian
    Greco, Antonio
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2017, 37 : 239 - 248
  • [49] The nonuniqueness of the tangent cones at infinity of Ricci-flat manifolds
    Hattori, Kota
    GEOMETRY & TOPOLOGY, 2017, 21 (05) : 2683 - 2723
  • [50] ON THE FIRST EIGENVALUE OF THE STEKLOV EIGENVALUE PROBLEM FOR THE INFINITY LAPLACIAN
    Le, An
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2006,