A weighted eigenvalue problem of the biased infinity Laplacian*

被引:3
|
作者
Liu, Fang [1 ]
Yang, Xiao-Ping [2 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Sci, Dept Math, Nanjing 210094, Jiangsu, Peoples R China
[2] Nanjing Univ, Dept Math, Nanjing 210093, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
biased infinity Laplacian; viscosity solution; principal eigenvalue; comparison principle; Harnack inequality; Lipschitz regularity;
D O I
10.1088/1361-6544/abd85d
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a weighted eigenvalue problem of the beta-biased infinity Laplacian operator arising from the beta-biased tug-of-war. We characterize the principal eigenvalue by the comparison principle and show that beta-biased infinity Laplacian operator possesses two principal eigenvalues, corresponding to a positive and a negative principal eigenfunction. When a parameter is less than the principal eigenvalue, certain existence and uniqueness results of the inhomogeneous equations related to this problem are established. As an application, we obtain the decay estimates for viscosity solutions of the parabolic problem associated to the beta-biased infinity Laplacian. In the process, we also establish the Lipschitz regularity and Harnack inequality by barrier method.
引用
收藏
页码:1197 / 1237
页数:41
相关论文
共 50 条
  • [1] A weighted eigenvalue problem of the degenerate operator associated with infinity Laplacian
    Liu, Fang
    Tian, Long
    Zhao, Peibiao
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 200 (200)
  • [2] AN EIGENVALUE PROBLEM FOR THE INFINITY-LAPLACIAN
    Bhattacharya, Tilak
    Marazzi, Leonardo
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2013,
  • [3] ON THE FIRST EIGENVALUE OF THE STEKLOV EIGENVALUE PROBLEM FOR THE INFINITY LAPLACIAN
    Le, An
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2006,
  • [4] The Infinity Laplacian Eigenvalue Problem: Reformulation and a Numerical Scheme
    Farid Bozorgnia
    Leon Bungert
    Daniel Tenbrinck
    Journal of Scientific Computing, 2024, 98
  • [5] Principal eigenvalue problem for infinity Laplacian in metric spaces
    Liu, Qing
    Mitsuishi, Ayato
    ADVANCED NONLINEAR STUDIES, 2022, 22 (01) : 548 - 573
  • [6] The Infinity Laplacian Eigenvalue Problem: Reformulation and a Numerical Scheme
    Bozorgnia, Farid
    Bungert, Leon
    Tenbrinck, Daniel
    JOURNAL OF SCIENTIFIC COMPUTING, 2024, 98 (02)
  • [7] A weighted eigenvalue problem for the p-Laplacian plus a potential
    Cuesta, Mabel
    Quoirin, Humberto Ramos
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2009, 16 (04): : 469 - 491
  • [8] A weighted eigenvalue problem for the p-Laplacian plus a potential
    Mabel Cuesta
    Humberto Ramos Quoirin
    Nonlinear Differential Equations and Applications NoDEA, 2009, 16 : 469 - 491
  • [9] A Symmetry Problem for the Infinity Laplacian
    Crasta, Graziano
    Fragala, Ilaria
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (18) : 8411 - 8436
  • [10] The Gelfand problem for the Infinity Laplacian
    Charro, Fernando
    Son, Byungjae
    Wang, Peiyong
    MATHEMATICS IN ENGINEERING, 2022, 5 (02): : 1 - 28