Tangent lines of contact for the infinity Laplacian

被引:0
|
作者
Yifeng Yu
机构
[1] University of California at Berkeley,Department of Mathematics
关键词
Maximal Principle; Quantitative Estimate; Tangent Line; Unique Continuation; Strong Maximal Principle;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we will prove a “tangent line touching” condition for supersolutions of the infinity Laplacian. This is a kind of quantitative estimate for the failure of the strong maximal principle. When n = 2, this also implies the failure of the principle of unique continuation. In addition, we will establish a theorem of continuation.
引用
收藏
页码:349 / 355
页数:6
相关论文
共 50 条
  • [21] Evolution driven by the infinity fractional Laplacian
    Félix del Teso
    Jørgen Endal
    Espen R. Jakobsen
    Juan Luis Vázquez
    Calculus of Variations and Partial Differential Equations, 2023, 62
  • [22] On asymptotic expansions for the fractional infinity Laplacian
    del Teso, Felix
    Endal, Jorgen
    Lewicka, Marta
    ASYMPTOTIC ANALYSIS, 2022, 127 (03) : 201 - 216
  • [23] A PDE Perspective of the Normalized Infinity Laplacian
    Lu, Guozhen
    Wang, Peiyong
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2008, 33 (10) : 1788 - 1817
  • [24] Optimal Lipschitz extensions and the infinity laplacian
    Crandall, MG
    Evans, LC
    Gariepy, RF
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2001, 13 (02) : 123 - 139
  • [25] Evolution driven by the infinity fractional Laplacian
    del Teso, Felix
    Endal, Jorgen
    Jakobsen, Espen R.
    Luis Vazquez, Juan
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2023, 62 (04)
  • [26] Infinity Laplacian equations with singular absorptions
    Araujo, Damiao J.
    Sa, Ginaldo S.
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2022, 61 (04)
  • [27] AN EIGENVALUE PROBLEM FOR THE INFINITY-LAPLACIAN
    Bhattacharya, Tilak
    Marazzi, Leonardo
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2013,
  • [28] AN ANISOTROPIC INFINITY LAPLACIAN OBTAINED AS THE LIMIT OF THE ANISOTROPIC (p, q)-LAPLACIAN
    Perez-Llanos, Mayte
    Rossi, Julio D.
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2011, 13 (06) : 1057 - 1076
  • [29] An infinity of tight contact structures on an infinity of manifolds
    Giroux, E
    INVENTIONES MATHEMATICAE, 1999, 135 (03) : 789 - 802
  • [30] Large deviation and the tangent cone at infinity of a crystal lattice
    Motoko Kotani
    Toshikazu Sunada
    Mathematische Zeitschrift, 2006, 254 : 837 - 870