Bayesian methods of confidence interval construction for the population attributable risk from cross-sectional studies

被引:5
|
作者
Pirikahu, Sarah [1 ]
Jones, Geoffrey [1 ]
Hazelton, Martin L. [1 ]
Heuer, Cord [2 ]
机构
[1] Massey Univ, Inst Fundamental Sci Stat, Private Bag 11222, Palmerston North, New Zealand
[2] Massey Univ, Inst Vet Anim & Biomed Sci, EpiCtr, Palmerston North, New Zealand
关键词
population attributable risk; confidence interval; Bayesian analysis;
D O I
10.1002/sim.6870
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Population attributable risk measures the public health impact of the removal of a risk factor. To apply this concept to epidemiological data, the calculation of a confidence interval to quantify the uncertainty in the estimate is desirable. However, because perhaps of the confusion surrounding the attributable risk measures, there is no standard confidence interval or variance formula given in the literature. In this paper, we implement a fully Bayesian approach to confidence interval construction of the population attributable risk for cross-sectional studies. We show that, in comparison with a number of standard Frequentist methods for constructing confidence intervals (i.e.delta, jackknife and bootstrap methods), the Bayesian approach is superior in terms of percent coverage in all except a few cases. This paper also explores the effect of the chosen prior on the coverage and provides alternatives for particular situations. Copyright (c) 2016 John Wiley & Sons, Ltd.
引用
收藏
页码:3117 / 3130
页数:14
相关论文
共 50 条
  • [41] Population-attributable fractions of risk factors for all-cause dementia in China rural and urban areas: a cross-sectional study
    Hu, Fei-fei
    Cheng, Gui-rong
    Liu, Dan
    Liu, Qian
    Gan, Xu-guang
    Li, Lin
    Wang, Xiao-dan
    Zhang, Bo
    An, Li-na
    Chen, Cong
    Zou, Ming-jun
    Xu, Lang
    Ou, Yang-ming
    Chen, Yu-shan
    Li, Jin-quan
    Wei, Zhen
    Wang, Yue-yi
    Wu, Qiong
    Chen, Xing-xing
    Yang, Xi-fei
    Wu, Qing-ming
    Feng, Lei
    Zhang, Jing-jing
    Xu, Heng
    Yu, Ya-fu
    Yang, Meng-liu
    Qian, Jin
    Lian, Peng-fei
    Fu, Li-yan
    Duan, Ting-ting
    Tian, Yuan
    Cheng, Xi
    Li, Xin-wen
    Yan, Pin-ting
    Huang, Guowei
    Dong, Hongxin
    Ji, Yong
    Zeng, Yan
    JOURNAL OF NEUROLOGY, 2022, 269 (06) : 3147 - 3158
  • [42] Population attributable risk (PAR) of overweight and obesity on chronic diseases: South Australian representative, cross-sectional data, 2004-2006
    Dal Grande, Eleonora
    Gill, Tiffany
    Wyatt, Lydia
    Chittleborough, Catherine R.
    Phillips, Patrick J.
    Taylor, Anne W.
    OBESITY RESEARCH & CLINICAL PRACTICE, 2009, 3 (03) : 159 - 168
  • [43] Prevalence and population attributable fractions of potentially modifiable risk factors for dementia in Canada: A cross-sectional analysis of the Canadian Longitudinal Study on Aging
    Dolatshahi, Yasaman
    Mayhew, Alexandra
    O'Connell, Megan E.
    Liu-Ambrose, Teresa
    Taler, Vanessa
    Smith, Eric E.
    Hogan, David B.
    Kirkland, Susan
    Costa, Andrew P.
    Wolfson, Christina
    Raina, Parminder
    Griffith, Lauren
    Jones, Aaron
    CANADIAN JOURNAL OF PUBLIC HEALTH-REVUE CANADIENNE DE SANTE PUBLIQUE, 2024, 115 (06): : 953 - 963
  • [44] Population-attributable fractions of risk factors for all-cause dementia in China rural and urban areas: a cross-sectional study
    Fei-fei Hu
    Gui-rong Cheng
    Dan Liu
    Qian Liu
    Xu-guang Gan
    Lin Li
    Xiao-dan Wang
    Bo Zhang
    Li-na An
    Cong Chen
    Ming-jun Zou
    Lang Xu
    Yang-ming Ou
    Yu-shan Chen
    Jin-quan Li
    Zhen Wei
    Yue-yi Wang
    Qiong Wu
    Xing-xing Chen
    Xi-fei Yang
    Qing-ming Wu
    Lei Feng
    Jing-jing Zhang
    Heng Xu
    Ya-fu Yu
    Meng-liu Yang
    Jin Qian
    Peng-fei Lian
    Li-yan Fu
    Ting-ting Duan
    Yuan Tian
    Xi Cheng
    Xin-wen Li
    Pin-ting Yan
    Guowei Huang
    Hongxin Dong
    Yong Ji
    Yan Zeng
    Journal of Neurology, 2022, 269 : 3147 - 3158
  • [46] Comparative Analysis of the Most Important Cardiovascular Risk Factors Based on Cross-Sectional Studies in the Population of Latvia
    Erglis, Andrejs
    Bajare, Iveta
    Jegere, Sanda
    Mintale, Iveta
    Barzdins, Juris
    Luguzis, Artis
    Apinis, Peteris
    Caksa, Anda
    Gavare, Iveta
    Dzerve, Vilnis
    MEDICINA-LITHUANIA, 2022, 58 (05):
  • [47] Economic burden attributable to functional bowel disorders in Iran: A cross-sectional population-based study
    Moghimi-Dehkordi, Bijan
    Vahedi, Mohsen
    Pourhoseingholi, Mohammad Amin
    Mansoori, Babak Khoshkrood
    Safaee, Azadeh
    Habibi, Manijeh
    Pourhoseingholi, Asma
    Zali, Mohammad Reza
    JOURNAL OF DIGESTIVE DISEASES, 2011, 12 (05) : 384 - 392
  • [48] Bayesian modeling of incidence and progression of disease from cross-sectional data
    Dunson, DB
    Baird, DD
    BIOMETRICS, 2002, 58 (04) : 813 - 822
  • [49] The Risk Factors for Diabetic Retinopathy in a Chinese Population: A Cross-Sectional Study
    Sun, Qingmin
    Jing, Yali
    Zhang, Bingjie
    Gu, Tianwei
    Meng, Ran
    Sun, Jie
    Zhu, Dalong
    Wang, Yaping
    JOURNAL OF DIABETES RESEARCH, 2021, 2021
  • [50] Risk factors for stroke in a population of central China: A cross-sectional study
    Wang, Honglian
    Wu, Mingcan
    Tu, Qingfen
    Li, Maokun
    MEDICINE, 2022, 101 (46) : E31946