Bayesian methods of confidence interval construction for the population attributable risk from cross-sectional studies

被引:5
|
作者
Pirikahu, Sarah [1 ]
Jones, Geoffrey [1 ]
Hazelton, Martin L. [1 ]
Heuer, Cord [2 ]
机构
[1] Massey Univ, Inst Fundamental Sci Stat, Private Bag 11222, Palmerston North, New Zealand
[2] Massey Univ, Inst Vet Anim & Biomed Sci, EpiCtr, Palmerston North, New Zealand
关键词
population attributable risk; confidence interval; Bayesian analysis;
D O I
10.1002/sim.6870
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Population attributable risk measures the public health impact of the removal of a risk factor. To apply this concept to epidemiological data, the calculation of a confidence interval to quantify the uncertainty in the estimate is desirable. However, because perhaps of the confusion surrounding the attributable risk measures, there is no standard confidence interval or variance formula given in the literature. In this paper, we implement a fully Bayesian approach to confidence interval construction of the population attributable risk for cross-sectional studies. We show that, in comparison with a number of standard Frequentist methods for constructing confidence intervals (i.e.delta, jackknife and bootstrap methods), the Bayesian approach is superior in terms of percent coverage in all except a few cases. This paper also explores the effect of the chosen prior on the coverage and provides alternatives for particular situations. Copyright (c) 2016 John Wiley & Sons, Ltd.
引用
收藏
页码:3117 / 3130
页数:14
相关论文
共 50 条
  • [21] Population attributable fraction of indicators for musculoskeletal diseases: a cross-sectional study of fishers in Korea
    Lee, Jaehoo
    Sim, Bohyun
    Ju, Bonggyun
    Lee, Chul Gab
    Park, Ki-Soo
    Kim, Mi-Ji
    Kim, Jeong Ho
    Kim, Kunhyung
    Song, Hansoo
    ANNALS OF OCCUPATIONAL AND ENVIRONMENTAL MEDICINE, 2022, 34
  • [22] Combining Cross-sectional Data on Prevalence with Risk Estimates from a Prediction Model A Novel Method for Estimating the Attributable Risk
    Engelhardt, B.
    Koenig, J.
    Blettner, M.
    Wild, P.
    Muenzel, T.
    Lackner, K.
    Blankenberg, S.
    Pfeiffer, N.
    Beutel, M.
    Zwiener, I.
    METHODS OF INFORMATION IN MEDICINE, 2014, 53 (05) : 371 - 379
  • [23] REGRESSION METHODS FOR ESTIMATING ATTRIBUTABLE RISK IN POPULATION-BASED STUDIES
    COUGHLIN, S
    NASS, C
    TROCK, B
    BUNIN, G
    AMERICAN JOURNAL OF EPIDEMIOLOGY, 1990, 132 (04) : 782 - 782
  • [24] Risk factors and nomogram construction for predicting women with chronic pelvic pain:a cross-sectional population study
    Zhu, Mingyue
    Huang, Fei
    Xu, Jingyun
    Chen, Wanwen
    Ding, Bo
    Shen, Yang
    HELIYON, 2024, 10 (14)
  • [25] Comparison of risk factors from cross-sectional versus longitudinal studies.
    Isong, U
    Beck, JD
    Slade, GD
    Koch, GG
    JOURNAL OF DENTAL RESEARCH, 1998, 77 : 106 - 106
  • [26] Methods to assess the contribution of diseases to disability using cross-sectional studies: comparison of different versions of the attributable fraction and the attribution method
    Palazzo, Clemence
    Yokota, Renata T. C.
    Ferguson, John
    Tafforeau, Jean
    Ravaud, Jean-Francois
    Van Oyen, Herman
    Nusselder, Wilma J.
    INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2019, 48 (02) : 559 - 570
  • [27] Population attributable fractions for risk factors for dementia in seven Latin American countries: an analysis using cross-sectional survey data
    Paradela, Regina Silva
    Calandri, Ismael
    Castro, Natalia Pozo
    Garat, Emanuel
    Delgado, Carolina
    Crivelli, Lucia
    Yaffe, Kristine
    Ferri, Cleusa P.
    Mukadam, Naaheed
    Livingston, Gill
    Suemoto, Claudia Kimie
    LANCET GLOBAL HEALTH, 2024, 12 (10): : e1600 - e1610
  • [28] Population Prevalence and Correlates of Prolonged QT Interval Cross-Sectional, Population-Based Study From Rural Uganda
    Magodoro, Itai M.
    Albano, Alfred J.
    Muthalaly, Rahul
    Koplan, Bruce
    North, Crystal M.
    Vorechovska, Dagmar
    Downey, Jordan
    Kraemer, John
    Vaglio, Martino
    Badilini, Fabio
    Kakuhire, Bernard
    Tsai, Alexander C.
    Siedner, Mark J.
    GLOBAL HEART, 2019, 14 (01) : 17 - +
  • [29] Predictive risk modelling in the Spanish population: a cross-sectional study
    Juan F Orueta
    Roberto Nuño-Solinis
    Maider Mateos
    Itziar Vergara
    Gonzalo Grandes
    Santiago Esnaola
    BMC Health Services Research, 13
  • [30] Predictive risk modelling in the Spanish population: a cross-sectional study
    Orueta, Juan F.
    Nuno-Solinis, Roberto
    Mateos, Maider
    Vergara, Itziar
    Grandes, Gonzalo
    Esnaola, Santiago
    BMC HEALTH SERVICES RESEARCH, 2013, 13