Bayesian methods of confidence interval construction for the population attributable risk from cross-sectional studies

被引:5
|
作者
Pirikahu, Sarah [1 ]
Jones, Geoffrey [1 ]
Hazelton, Martin L. [1 ]
Heuer, Cord [2 ]
机构
[1] Massey Univ, Inst Fundamental Sci Stat, Private Bag 11222, Palmerston North, New Zealand
[2] Massey Univ, Inst Vet Anim & Biomed Sci, EpiCtr, Palmerston North, New Zealand
关键词
population attributable risk; confidence interval; Bayesian analysis;
D O I
10.1002/sim.6870
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Population attributable risk measures the public health impact of the removal of a risk factor. To apply this concept to epidemiological data, the calculation of a confidence interval to quantify the uncertainty in the estimate is desirable. However, because perhaps of the confusion surrounding the attributable risk measures, there is no standard confidence interval or variance formula given in the literature. In this paper, we implement a fully Bayesian approach to confidence interval construction of the population attributable risk for cross-sectional studies. We show that, in comparison with a number of standard Frequentist methods for constructing confidence intervals (i.e.delta, jackknife and bootstrap methods), the Bayesian approach is superior in terms of percent coverage in all except a few cases. This paper also explores the effect of the chosen prior on the coverage and provides alternatives for particular situations. Copyright (c) 2016 John Wiley & Sons, Ltd.
引用
收藏
页码:3117 / 3130
页数:14
相关论文
共 50 条
  • [31] Cross-sectional study of risk factors for atherosclerosis in the Azorean population
    Cymbron, Teresa
    Raposo, Mafalda
    Kazachkova, Nadiya
    Bettencourt, Conceicao
    Silva, Francisca
    Santos, Cristina
    Dahmani, Yahya
    Lourenco, Paula
    Ferin, Rita
    Pavao, Maria Leonor
    Lima, Manuela
    ANNALS OF HUMAN BIOLOGY, 2011, 38 (03) : 354 - 359
  • [32] Mastication and Risk for Diabetes in a Japanese Population: A Cross-Sectional Study
    Yamazaki, Toru
    Yamori, Masashi
    Asai, Keita
    Nakano-Araki, Ikuko
    Yamaguchi, Akihiko
    Takahashi, Katsu
    Sekine, Akihiro
    Matsuda, Fumihiko
    Kosugi, Shinji
    Nakayama, Takeo
    Inagaki, Nobuya
    Bessho, Kazuhisa
    PLOS ONE, 2013, 8 (06):
  • [33] A retrospective cohort and cross-sectional survey examining vaccine confidence in an urban pregnant population
    Schultz, Claire L.
    Bau, Gabrielle
    Mackey, Ann
    Phan, Jessica
    Curtin, John
    Shlay, Judith
    Larrea, Nicole
    AMERICAN JOURNAL OF OBSTETRICS AND GYNECOLOGY, 2023, 228 (01) : S289 - S290
  • [34] Acne and One's Self Confidence: Cross-sectional study on Malaysian Student population
    Abhinitha, P.
    Gengatharan, Ravina Suloshini
    Zulkiflee, Sarah
    Ganisan, Purveena
    Arumugam, Sitharrthen
    Kumar, Naveen
    BANGLADESH JOURNAL OF MEDICAL SCIENCE, 2019, 18 (01): : 83 - 86
  • [35] Estimating the potential impacts of intervention from observational data: methods for estimating causal attributable risk in a cross-sectional analysis of depressive symptoms in Latin America
    Fleischer, N. L.
    Fernald, L. C. H.
    Hubbard, A. E.
    JOURNAL OF EPIDEMIOLOGY AND COMMUNITY HEALTH, 2010, 64 (01) : 16 - 21
  • [36] A simple method of determining confidence intervals for population attributable risk from complex surveys
    Natarajan, Sundar
    Lipsitz, Stuart R.
    Rimm, Eric
    STATISTICS IN MEDICINE, 2007, 26 (17) : 3229 - 3239
  • [37] Joint spatial Bayesian modeling for studies combining longitudinal and cross-sectional data
    Lawson, Andrew B.
    Carroll, Rachel
    Castro, Marcia
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2014, 23 (06) : 611 - 624
  • [38] A comparison of methods for the construction of confidence interval for relative risk in stratified matched-pair designs
    Tang, Nian-Sheng
    Li, Hui-Qiong
    Tang, Man-Lai
    STATISTICS IN MEDICINE, 2010, 29 (01) : 46 - 62
  • [39] Associated factors vs risk factors in cross-sectional studies
    Antay-Bedregal, David
    Camargo-Revello, Evelyn
    Alvarado, German F.
    PATIENT PREFERENCE AND ADHERENCE, 2015, 9 : 1635 - 1635
  • [40] Prevalence of chronic cough, its risk factors and population attributable risk in the Burden of Obstructive Lung Disease (BOLD) study: a multinational cross-sectional study
    Abozid, Hazim
    Patel, Jaymini
    Burney, Peter
    Hartl, Sylvia
    Breyer-Kohansal, Robab
    Mortimer, Kevin
    Nafees, Asaad A.
    Al Ghobain, Mohammed
    Welte, Tobias
    Harrabi, Imed
    Denguezli, Meriam
    Loh, Li Cher
    Rashid, Abdul
    Gislason, Thorarinn
    Barbara, Cristina
    Cardoso, Joao
    Rodrigues, Fatima
    Seemungal, Terence
    Obaseki, Daniel
    Juvekar, Sanjay
    Paraguas, Stefanni Nonna
    Tan, Wan C.
    Franssen, Frits M. E.
    Mejza, Filip
    Mannino, David
    Janson, Christer
    Cherkaski, Hamid Hacene
    Anand, Mahesh Padukudru
    Hafizi, Hasan
    Buist, Sonia
    Koul, Parvaiz A.
    Sony, Asmael
    Breyer, Marie-Kathrin
    Burghuber, Otto C.
    Wouters, Emiel F. M.
    Amaral, Andre F. S.
    ECLINICALMEDICINE, 2024, 68