cellHarmony: cell-level matching and holistic comparison of single-cell transcriptomes

被引:49
|
作者
DePasquale, Erica A. K. [1 ,2 ]
Schnell, Daniel [2 ,3 ,4 ]
Dexheimer, Phillip [1 ,2 ]
Ferchen, Kyle [5 ,6 ]
Hay, Stuart [2 ]
Chetal, Kashish [2 ]
Valiente-Alandi, Inigo [3 ,4 ]
Blaxall, Burns C. [3 ,4 ,7 ]
Grimes, H. Leighton [5 ,6 ,7 ,8 ]
Salomonis, Nathan [1 ,2 ,7 ]
机构
[1] Univ Cincinnati, Dept Biomed Informat, Cincinnati, OH 45219 USA
[2] Cincinnati Childrens Hosp Med Ctr, Div Biomed Informat, Cincinnati, OH 45229 USA
[3] Cincinnati Childrens Hosp Med Ctr, Heart Inst, Cincinnati, OH 45229 USA
[4] Cincinnati Childrens Hosp Med Ctr, Ctr Translat Fibrosis Res, Cincinnati, OH 45229 USA
[5] Univ Cincinnati, Dept Canc Biol, Cincinnati, OH 45219 USA
[6] Cincinnati Childrens Hosp Med Ctr, Div Immunobiol & Ctr Syst Immunol, Cincinnati, OH 45229 USA
[7] Univ Cincinnati, Sch Med, Dept Pediat, Cincinnati, OH 45219 USA
[8] Cincinnati Childrens Hosp Med Ctr, Div Expt Hematol & Canc Biol, Cincinnati, OH 45229 USA
基金
美国国家卫生研究院;
关键词
ACUTE MYELOID-LEUKEMIA; MYOCARDIAL-INFARCTION; KEY PLAYER; EGR-1; MAINTENANCE; PROGENITORS; ONTOLOGY; MATRIX; HEART;
D O I
10.1093/nar/gkz789
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
To understand the molecular pathogenesis of human disease, precision analyses to define alterations within and between disease-associated cell populations are desperately needed. Single-cell genomics represents an ideal platform to enable the identification and comparison of normal and diseased transcriptional cell populations. We created cellHarmony, an integrated solution for the unsupervised analysis, classification, and comparison of cell types from diverse single-cell RNA-Seq datasets. cellHarmony efficiently and accurately matches single-cell transcriptomes using a community-clustering and alignment strategy to compute differences in cell-type specific gene expression over potentially dozens of cell populations. Such transcriptional differences are used to automatically identify distinct and shared gene programs among cell-types and identify impacted pathways and transcriptional regulatory networks to understand the impact of perturbations at a systems level. cellHarmony is implemented as a python package and as an integrated workflow within the software AltAnalyze. We demonstrate that cellHarmony has improved or equivalent performance to alternative label projection methods, is able to identify the likely cellular origins of malignant states, stratify patients into clinical disease subtypes from identified gene programs, resolve discrete disease networks impacting specific cell-types, and illuminate therapeutic mechanisms. Thus, this approach holds tremendous promise in revealing the molecular and cellular origins of complex disease.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Single-cell transcriptomes of the regenerating intestine reveal a revival stem cell
    Ayyaz, Arshad
    Kumar, Sandeep
    Sangiorgi, Bruno
    Ghoshal, Bibaswan
    Gosio, Jessica
    Ouladan, Shaida
    Fink, Mardi
    Barutcu, Seda
    Trcka, Daniel
    Shen, Jess
    Chan, Kin
    Wrana, Jeffrey L.
    Gregorieff, Alex
    NATURE, 2019, 569 (7754) : 121 - +
  • [22] Cell signaling at the single-cell level
    Elowitz, M.
    MOLECULAR BIOLOGY OF THE CELL, 2011, 22
  • [23] T cell fate and clonality inference from single-cell transcriptomes
    Stubbington, Michael J. T.
    Lonnberg, Tapio
    Proserpio, Valentina
    Clare, Simon
    Speak, Anneliese
    Dougan, Gordon
    Teichmann, Sarah A.
    NATURE METHODS, 2016, 13 (04) : 329 - 332
  • [24] T cell fate and clonality inference from single-cell transcriptomes
    Stubbington M.J.T.
    Lönnberg T.
    Proserpio V.
    Clare S.
    Speak A.O.
    Dougan G.
    Teichmann S.A.
    Nature Methods, 2016, 13 (4) : 329 - 332
  • [25] Single-cell transcriptomes of the regenerating intestine reveal a revival stem cell
    Arshad Ayyaz
    Sandeep Kumar
    Bruno Sangiorgi
    Bibaswan Ghoshal
    Jessica Gosio
    Shaida Ouladan
    Mardi Fink
    Seda Barutcu
    Daniel Trcka
    Jess Shen
    Kin Chan
    Jeffrey L. Wrana
    Alex Gregorieff
    Nature, 2019, 569 : 121 - 125
  • [26] Cell-level surfactant
    不详
    CHEMISTRY & INDUSTRY, 2021, 85 (09) : 33 - 33
  • [27] Multi-level cellular and functional annotation of single-cell transcriptomes using scPipeline
    Nicholas Mikolajewicz
    Rafael Gacesa
    Magali Aguilera-Uribe
    Kevin R. Brown
    Jason Moffat
    Hong Han
    Communications Biology, 5
  • [28] Multi-level cellular and functional annotation of single-cell transcriptomes using scPipeline
    Mikolajewicz, Nicholas
    Gacesa, Rafael
    Aguilera-Uribe, Magali
    Brown, Kevin R.
    Moffat, Jason
    Han, Hong
    COMMUNICATIONS BIOLOGY, 2022, 5 (01)
  • [29] Comparison of different cell-cluster models for cell-level dosimetry
    Välimäki, J
    Lampinen, JS
    Kuronen, AA
    Ilvonen, SA
    Stepanek, J
    Savolainen, SE
    ACTA ONCOLOGICA, 2001, 40 (01) : 92 - 97
  • [30] JOINTLY: interpretable joint clustering of single-cell transcriptomes
    Moller, Andreas Fonss
    Madsen, Jesper Grud Skat
    NATURE COMMUNICATIONS, 2023, 14 (01)