cellHarmony: cell-level matching and holistic comparison of single-cell transcriptomes

被引:49
|
作者
DePasquale, Erica A. K. [1 ,2 ]
Schnell, Daniel [2 ,3 ,4 ]
Dexheimer, Phillip [1 ,2 ]
Ferchen, Kyle [5 ,6 ]
Hay, Stuart [2 ]
Chetal, Kashish [2 ]
Valiente-Alandi, Inigo [3 ,4 ]
Blaxall, Burns C. [3 ,4 ,7 ]
Grimes, H. Leighton [5 ,6 ,7 ,8 ]
Salomonis, Nathan [1 ,2 ,7 ]
机构
[1] Univ Cincinnati, Dept Biomed Informat, Cincinnati, OH 45219 USA
[2] Cincinnati Childrens Hosp Med Ctr, Div Biomed Informat, Cincinnati, OH 45229 USA
[3] Cincinnati Childrens Hosp Med Ctr, Heart Inst, Cincinnati, OH 45229 USA
[4] Cincinnati Childrens Hosp Med Ctr, Ctr Translat Fibrosis Res, Cincinnati, OH 45229 USA
[5] Univ Cincinnati, Dept Canc Biol, Cincinnati, OH 45219 USA
[6] Cincinnati Childrens Hosp Med Ctr, Div Immunobiol & Ctr Syst Immunol, Cincinnati, OH 45229 USA
[7] Univ Cincinnati, Sch Med, Dept Pediat, Cincinnati, OH 45219 USA
[8] Cincinnati Childrens Hosp Med Ctr, Div Expt Hematol & Canc Biol, Cincinnati, OH 45229 USA
基金
美国国家卫生研究院;
关键词
ACUTE MYELOID-LEUKEMIA; MYOCARDIAL-INFARCTION; KEY PLAYER; EGR-1; MAINTENANCE; PROGENITORS; ONTOLOGY; MATRIX; HEART;
D O I
10.1093/nar/gkz789
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
To understand the molecular pathogenesis of human disease, precision analyses to define alterations within and between disease-associated cell populations are desperately needed. Single-cell genomics represents an ideal platform to enable the identification and comparison of normal and diseased transcriptional cell populations. We created cellHarmony, an integrated solution for the unsupervised analysis, classification, and comparison of cell types from diverse single-cell RNA-Seq datasets. cellHarmony efficiently and accurately matches single-cell transcriptomes using a community-clustering and alignment strategy to compute differences in cell-type specific gene expression over potentially dozens of cell populations. Such transcriptional differences are used to automatically identify distinct and shared gene programs among cell-types and identify impacted pathways and transcriptional regulatory networks to understand the impact of perturbations at a systems level. cellHarmony is implemented as a python package and as an integrated workflow within the software AltAnalyze. We demonstrate that cellHarmony has improved or equivalent performance to alternative label projection methods, is able to identify the likely cellular origins of malignant states, stratify patients into clinical disease subtypes from identified gene programs, resolve discrete disease networks impacting specific cell-types, and illuminate therapeutic mechanisms. Thus, this approach holds tremendous promise in revealing the molecular and cellular origins of complex disease.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] scRCMF: Identification of Cell Subpopulations and Transition States From Single-Cell Transcriptomes
    Zheng, Xiaoying
    Jin, Suoqin
    Nie, Qing
    Zou, Xiufen
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2020, 67 (05) : 1418 - 1428
  • [42] T Cell Fate at the Single-Cell Level
    Buchholz, Veit R.
    Schumacher, Ton N. M.
    Busch, Dirk H.
    ANNUAL REVIEW OF IMMUNOLOGY, VOL 34, 2016, 34 : 65 - 92
  • [43] Mapping Cell Atlases at the Single-Cell Level
    Ye, Fang
    Wang, Jingjing
    Li, Jiaqi
    Mei, Yuqing
    Guo, Guoji
    ADVANCED SCIENCE, 2024, 11 (08)
  • [44] Multiplexed, targeted profiling of single-cell proteomes and transcriptomes in a single reaction
    Genshaft, Alex S.
    Li, Shuqiang
    Gallant, Caroline J.
    Darmanis, Spyros
    Prakadan, Sanjay M.
    Ziegler, Carly G. K.
    Lundberg, Martin
    Fredriksson, Simon
    Hong, Joyce
    Regev, Aviv
    Livak, Kenneth J.
    Landegren, Ulf
    Shalek, Alex K.
    GENOME BIOLOGY, 2016, 17
  • [45] Integration and transfer learning of single-cell transcriptomes via cFIT
    Peng, Minshi
    Li, Yue
    Wamsley, Brie
    Wei, Yuting
    Roeder, Kathryn
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2021, 118 (10)
  • [46] siVAE: interpretable deep generative models for single-cell transcriptomes
    Choi, Yongin
    Li, Ruoxin
    Quon, Gerald
    GENOME BIOLOGY, 2023, 24 (01)
  • [47] Nanopore sequencing of single-cell transcriptomes with scCOLOR-seq
    Philpott, Martin
    Watson, Jonathan
    Thakurta, Anjan
    Brown, Tom, Jr.
    Brown, Tom, Sr.
    Oppermann, Udo
    Cribbs, Adam P.
    NATURE BIOTECHNOLOGY, 2021, 39 (12) : 1517 - +
  • [48] siVAE: interpretable deep generative models for single-cell transcriptomes
    Yongin Choi
    Ruoxin Li
    Gerald Quon
    Genome Biology, 24
  • [49] Efficient integration of heterogeneous single-cell transcriptomes using Scanorama
    Hie, Brian
    Bryson, Bryan
    Berger, Bonnie
    NATURE BIOTECHNOLOGY, 2019, 37 (06) : 685 - +
  • [50] Single-cell transcriptomes reveal the heterogeneity and microenvironment of vestibular schwannoma
    Huo, Zirong
    Wang, Zhaohui
    Luo, Huahong
    Maimaitiming, Dilihumaer
    Yang, Tao
    Liu, Huihui
    Li, Huipeng
    Wu, Hao
    Zhang, Zhihua
    NEURO-ONCOLOGY, 2024, 26 (03) : 444 - 457