cellHarmony: cell-level matching and holistic comparison of single-cell transcriptomes

被引:49
|
作者
DePasquale, Erica A. K. [1 ,2 ]
Schnell, Daniel [2 ,3 ,4 ]
Dexheimer, Phillip [1 ,2 ]
Ferchen, Kyle [5 ,6 ]
Hay, Stuart [2 ]
Chetal, Kashish [2 ]
Valiente-Alandi, Inigo [3 ,4 ]
Blaxall, Burns C. [3 ,4 ,7 ]
Grimes, H. Leighton [5 ,6 ,7 ,8 ]
Salomonis, Nathan [1 ,2 ,7 ]
机构
[1] Univ Cincinnati, Dept Biomed Informat, Cincinnati, OH 45219 USA
[2] Cincinnati Childrens Hosp Med Ctr, Div Biomed Informat, Cincinnati, OH 45229 USA
[3] Cincinnati Childrens Hosp Med Ctr, Heart Inst, Cincinnati, OH 45229 USA
[4] Cincinnati Childrens Hosp Med Ctr, Ctr Translat Fibrosis Res, Cincinnati, OH 45229 USA
[5] Univ Cincinnati, Dept Canc Biol, Cincinnati, OH 45219 USA
[6] Cincinnati Childrens Hosp Med Ctr, Div Immunobiol & Ctr Syst Immunol, Cincinnati, OH 45229 USA
[7] Univ Cincinnati, Sch Med, Dept Pediat, Cincinnati, OH 45219 USA
[8] Cincinnati Childrens Hosp Med Ctr, Div Expt Hematol & Canc Biol, Cincinnati, OH 45229 USA
基金
美国国家卫生研究院;
关键词
ACUTE MYELOID-LEUKEMIA; MYOCARDIAL-INFARCTION; KEY PLAYER; EGR-1; MAINTENANCE; PROGENITORS; ONTOLOGY; MATRIX; HEART;
D O I
10.1093/nar/gkz789
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
To understand the molecular pathogenesis of human disease, precision analyses to define alterations within and between disease-associated cell populations are desperately needed. Single-cell genomics represents an ideal platform to enable the identification and comparison of normal and diseased transcriptional cell populations. We created cellHarmony, an integrated solution for the unsupervised analysis, classification, and comparison of cell types from diverse single-cell RNA-Seq datasets. cellHarmony efficiently and accurately matches single-cell transcriptomes using a community-clustering and alignment strategy to compute differences in cell-type specific gene expression over potentially dozens of cell populations. Such transcriptional differences are used to automatically identify distinct and shared gene programs among cell-types and identify impacted pathways and transcriptional regulatory networks to understand the impact of perturbations at a systems level. cellHarmony is implemented as a python package and as an integrated workflow within the software AltAnalyze. We demonstrate that cellHarmony has improved or equivalent performance to alternative label projection methods, is able to identify the likely cellular origins of malignant states, stratify patients into clinical disease subtypes from identified gene programs, resolve discrete disease networks impacting specific cell-types, and illuminate therapeutic mechanisms. Thus, this approach holds tremendous promise in revealing the molecular and cellular origins of complex disease.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Deciphering Developmental Processes from Single-Cell Transcriptomes
    Robson, Paul
    DEVELOPMENTAL CELL, 2014, 29 (03) : 260 - 261
  • [32] JOINTLY: interpretable joint clustering of single-cell transcriptomes
    Andreas Fønss Møller
    Jesper Grud Skat Madsen
    Nature Communications, 14
  • [33] Single-nucleus and single-cell transcriptomes compared in matched cortical cell types
    Bakken, Trygve E.
    Hodge, Rebecca D.
    Miller, Jeremy A.
    Yao, Zizhen
    Thuc Nghi Nguyen
    Aevermann, Brian
    Barkan, Eliza
    Bertagnolli, Darren
    Casper, Tamara
    Dee, Nick
    Garren, Emma
    Goldy, Jeff
    Graybuck, Lucas T.
    Kroll, Matthew
    Lasken, Roger S.
    Lathia, Kanan
    Parry, Sheana
    Rimorin, Christine
    Scheuermann, Richard H.
    Schork, Nicholas J.
    Shehata, Soraya I.
    Tieu, Michael
    Phillips, John W.
    Bernard, Amy
    Smith, Kimberly A.
    Zeng, Hongkui
    Lein, Ed S.
    Tasic, Bosiljka
    PLOS ONE, 2018, 13 (12):
  • [34] MAT2: manifold alignment of single-cell transcriptomes with cell triplets
    Zhang, Jinglong
    Zhang, Xu
    Wang, Ying
    Zeng, Feng
    Zhao, Xing-Ming
    BIOINFORMATICS, 2021, 37 (19) : 3263 - 3269
  • [35] Multiplexed, targeted profiling of single-cell proteomes and transcriptomes in a single reaction
    Alex S Genshaft
    Shuqiang Li
    Caroline J. Gallant
    Spyros Darmanis
    Sanjay M. Prakadan
    Carly G. K. Ziegler
    Martin Lundberg
    Simon Fredriksson
    Joyce Hong
    Aviv Regev
    Kenneth J. Livak
    Ulf Landegren
    Alex K. Shalek
    Genome Biology, 17
  • [36] PROTEOMICS AT THE SINGLE-CELL LEVEL
    Perkel, Jeffrey M.
    NATURE, 2021, 597 (7877) : 580 - 582
  • [37] Connectomics at the single-cell level
    Vogt, Nina
    NATURE METHODS, 2017, 14 (04) : 335 - 335
  • [38] Connectomics at the single-cell level
    Nina Vogt
    Nature Methods, 2017, 14 : 335 - 335
  • [39] Endothelial cell plasticity at the single-cell level
    Alessandra Pasut
    Lisa M. Becker
    Anne Cuypers
    Peter Carmeliet
    Angiogenesis, 2021, 24 : 311 - 326
  • [40] Endothelial cell plasticity at the single-cell level
    Pasut, Alessandra
    Becker, Lisa M.
    Cuypers, Anne
    Carmeliet, Peter
    ANGIOGENESIS, 2021, 24 (02) : 311 - 326