Multi-level cellular and functional annotation of single-cell transcriptomes using scPipeline

被引:6
|
作者
Mikolajewicz, Nicholas [1 ,2 ]
Gacesa, Rafael [1 ]
Aguilera-Uribe, Magali [1 ,2 ,3 ]
Brown, Kevin R. [1 ,2 ]
Moffat, Jason [1 ,2 ,3 ,4 ]
Han, Hong [1 ,2 ]
机构
[1] Univ Toronto, Donnelly Ctr, Toronto, ON, Canada
[2] Hosp Sick Children, Program Genet & Genome Biol, Toronto, ON, Canada
[3] Univ Toronto, Dept Mol Genet, Toronto, ON, Canada
[4] Univ Toronto, Inst Biomed Engn, Toronto, ON, Canada
基金
加拿大健康研究院;
关键词
D O I
10.1038/s42003-022-04093-2
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Single-cell RNA-sequencing (scRNA-seq) offers functional insight into complex biology, allowing for the interrogation of cellular populations and gene expression programs at single-cell resolution. Here, we introduce scPipeline, a single-cell data analysis toolbox that builds on existing methods and offers modular workflows for multi-level cellular annotation and user-friendly analysis reports. Advances to scRNA-seq annotation include: (i) co-dependency index (CDI)-based differential expression, (ii) cluster resolution optimization using a marker-specificity criterion, (iii) marker-based cell-type annotation with Miko scoring, and (iv) gene program discovery using scale-free shared nearest neighbor network (SSN) analysis. Both unsupervised and supervised procedures were validated using a diverse collection of scRNA-seq datasets and illustrative examples of cellular transcriptomic annotation of developmental and immunological scRNA-seq atlases are provided herein. Overall, scPipeline offers a flexible computational framework for in-depth scRNA-seq analysis. scPipeline is a single-cell data analysis toolbox that builds on existing methods and offers modular workflows for multi-level cellular annotation and user-friendly analysis reports.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Multi-level cellular and functional annotation of single-cell transcriptomes using scPipeline
    Nicholas Mikolajewicz
    Rafael Gacesa
    Magali Aguilera-Uribe
    Kevin R. Brown
    Jason Moffat
    Hong Han
    Communications Biology, 5
  • [2] ASURAT: functional annotation-driven unsupervised clustering of single-cell transcriptomes
    Iida, Keita
    Kondo, Jumpei
    Wibisana, Johannes Nicolaus
    Inoue, Masahiro
    Okada, Mariko
    BIOINFORMATICS, 2022, 38 (18) : 4330 - 4336
  • [3] Cellular identity at the single-cell level
    Coskun, Ahmet F.
    Eser, Umut
    Islam, Saiful
    MOLECULAR BIOSYSTEMS, 2016, 12 (10) : 2965 - 2979
  • [4] Single-cell transcriptomes in space
    Linda Koch
    Nature Reviews Genetics, 2018, 19 : 64 - 65
  • [5] cellHarmony: cell-level matching and holistic comparison of single-cell transcriptomes
    DePasquale, Erica A. K.
    Schnell, Daniel
    Dexheimer, Phillip
    Ferchen, Kyle
    Hay, Stuart
    Chetal, Kashish
    Valiente-Alandi, Inigo
    Blaxall, Burns C.
    Grimes, H. Leighton
    Salomonis, Nathan
    NUCLEIC ACIDS RESEARCH, 2019, 47 (21)
  • [6] Unsupervised cell functional annotation for single-cell RNA-seq
    Li, Dongshunyi
    Ding, Jun
    Bar-Joseph, Ziv
    GENOME RESEARCH, 2022, 32 (09) : 1765 - 1775
  • [7] Single-Cell Transcriptomes, Lineage, and Differentiation of Functional Airway Microfold Cells
    Surve, Manalee V.
    Lin, Brian
    Reedy, Jennifer L.
    Crossen, Arianne J.
    Xu, Anthony
    Klein, Bruce S.
    Vyas, Jatin M.
    Rajagopal, Jayaraj
    AMERICAN JOURNAL OF RESPIRATORY CELL AND MOLECULAR BIOLOGY, 2023, 69 (06) : 698 - 701
  • [8] Effective image annotation for search using multi-level semantics
    Cheng, PJ
    Chien, LF
    DIGITAL LIBRARIES: TECHNOLOGY AND MANAGEMENT OF INDIGENOUS KNOWLEDGE FOR GLOBAL ACCESS, 2003, 2911 : 230 - 242
  • [9] TECHNIQUE Single-cell transcriptomes in space
    Koch, Linda
    NATURE REVIEWS GENETICS, 2018, 19 (02) : 64 - 65
  • [10] Efficient integration of heterogeneous single-cell transcriptomes using Scanorama
    Hie, Brian
    Bryson, Bryan
    Berger, Bonnie
    NATURE BIOTECHNOLOGY, 2019, 37 (06) : 685 - +