Multi-level cellular and functional annotation of single-cell transcriptomes using scPipeline

被引:6
|
作者
Mikolajewicz, Nicholas [1 ,2 ]
Gacesa, Rafael [1 ]
Aguilera-Uribe, Magali [1 ,2 ,3 ]
Brown, Kevin R. [1 ,2 ]
Moffat, Jason [1 ,2 ,3 ,4 ]
Han, Hong [1 ,2 ]
机构
[1] Univ Toronto, Donnelly Ctr, Toronto, ON, Canada
[2] Hosp Sick Children, Program Genet & Genome Biol, Toronto, ON, Canada
[3] Univ Toronto, Dept Mol Genet, Toronto, ON, Canada
[4] Univ Toronto, Inst Biomed Engn, Toronto, ON, Canada
基金
加拿大健康研究院;
关键词
D O I
10.1038/s42003-022-04093-2
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Single-cell RNA-sequencing (scRNA-seq) offers functional insight into complex biology, allowing for the interrogation of cellular populations and gene expression programs at single-cell resolution. Here, we introduce scPipeline, a single-cell data analysis toolbox that builds on existing methods and offers modular workflows for multi-level cellular annotation and user-friendly analysis reports. Advances to scRNA-seq annotation include: (i) co-dependency index (CDI)-based differential expression, (ii) cluster resolution optimization using a marker-specificity criterion, (iii) marker-based cell-type annotation with Miko scoring, and (iv) gene program discovery using scale-free shared nearest neighbor network (SSN) analysis. Both unsupervised and supervised procedures were validated using a diverse collection of scRNA-seq datasets and illustrative examples of cellular transcriptomic annotation of developmental and immunological scRNA-seq atlases are provided herein. Overall, scPipeline offers a flexible computational framework for in-depth scRNA-seq analysis. scPipeline is a single-cell data analysis toolbox that builds on existing methods and offers modular workflows for multi-level cellular annotation and user-friendly analysis reports.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] JOINTLY: interpretable joint clustering of single-cell transcriptomes
    Andreas Fønss Møller
    Jesper Grud Skat Madsen
    Nature Communications, 14
  • [42] TripletCell: a deep metric learning framework for accurate annotation of cell types at the single-cell level
    Liu, Yan
    Wei, Guo
    Li, Chen
    Shen, Long-Chen
    Gasser, Robin B.
    Song, Jiangning
    Chen, Dijun
    Yu, Dong-Jun
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (03)
  • [43] CASCADE OF MULTI-LEVEL MULTI-INSTANCE CLASSIFIERS FOR IMAGE ANNOTATION
    Cam-Tu Nguyen
    Ha Vu Le
    Tokuyama, Takeshi
    KDIR 2011: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND INFORMATION RETRIEVAL, 2011, : 14 - 23
  • [44] Multiplexed, targeted profiling of single-cell proteomes and transcriptomes in a single reaction
    Alex S Genshaft
    Shuqiang Li
    Caroline J. Gallant
    Spyros Darmanis
    Sanjay M. Prakadan
    Carly G. K. Ziegler
    Martin Lundberg
    Simon Fredriksson
    Joyce Hong
    Aviv Regev
    Kenneth J. Livak
    Ulf Landegren
    Alex K. Shalek
    Genome Biology, 17
  • [45] Sequencing Plant Transcriptomes at Single-Cell Resolution Allows Unprecedented Characterization of Genetic and Developmental Cellular Processes
    Celedon, Jose M.
    PLANT PHYSIOLOGY, 2019, 179 (04) : 1439 - 1440
  • [46] Analysis of single-cell transcriptomes reveals gene expression states that drive key transitions in cellular subpopulations
    May, A. P.
    Shuga, J.
    Chen, P.
    Wang, X.
    Wang, J.
    Leyrat, A.
    Weaver, S.
    MOLECULAR BIOLOGY OF THE CELL, 2012, 23
  • [47] Integration mapping of cardiac fibroblast single-cell transcriptomes elucidates cellular principles of fibrosis in diverse pathologies
    Patrick, Ralph
    Janbandhu, Vaibhao
    Tallapragada, Vikram
    Tan, Shannon S. M.
    McKinna, Emily E.
    Contreras, Osvaldo
    Ghazanfar, Shila
    Humphreys, David T.
    Murray, Nicholas J.
    Tran, Yen T. H.
    Hume, Robert D.
    Chong, James J. H.
    Harvey, Richard P.
    SCIENCE ADVANCES, 2024, 10 (25):
  • [48] Comprehensive analysis of the functional TCR repertoire at the single-cell level
    Ozawa, Tatsuhiko
    Tajiri, Kazuto
    Kishi, Hiroyuki
    Muraguchi, Atsushi
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2008, 367 (04) : 820 - 825
  • [49] Multiplexed, targeted profiling of single-cell proteomes and transcriptomes in a single reaction
    Genshaft, Alex S.
    Li, Shuqiang
    Gallant, Caroline J.
    Darmanis, Spyros
    Prakadan, Sanjay M.
    Ziegler, Carly G. K.
    Lundberg, Martin
    Fredriksson, Simon
    Hong, Joyce
    Regev, Aviv
    Livak, Kenneth J.
    Landegren, Ulf
    Shalek, Alex K.
    GENOME BIOLOGY, 2016, 17
  • [50] Multi-level thinking cellular automata using granular computing title
    Hassan, Yasser F.
    IET INTELLIGENT TRANSPORT SYSTEMS, 2018, 12 (06) : 440 - 448