cellHarmony: cell-level matching and holistic comparison of single-cell transcriptomes

被引:49
|
作者
DePasquale, Erica A. K. [1 ,2 ]
Schnell, Daniel [2 ,3 ,4 ]
Dexheimer, Phillip [1 ,2 ]
Ferchen, Kyle [5 ,6 ]
Hay, Stuart [2 ]
Chetal, Kashish [2 ]
Valiente-Alandi, Inigo [3 ,4 ]
Blaxall, Burns C. [3 ,4 ,7 ]
Grimes, H. Leighton [5 ,6 ,7 ,8 ]
Salomonis, Nathan [1 ,2 ,7 ]
机构
[1] Univ Cincinnati, Dept Biomed Informat, Cincinnati, OH 45219 USA
[2] Cincinnati Childrens Hosp Med Ctr, Div Biomed Informat, Cincinnati, OH 45229 USA
[3] Cincinnati Childrens Hosp Med Ctr, Heart Inst, Cincinnati, OH 45229 USA
[4] Cincinnati Childrens Hosp Med Ctr, Ctr Translat Fibrosis Res, Cincinnati, OH 45229 USA
[5] Univ Cincinnati, Dept Canc Biol, Cincinnati, OH 45219 USA
[6] Cincinnati Childrens Hosp Med Ctr, Div Immunobiol & Ctr Syst Immunol, Cincinnati, OH 45229 USA
[7] Univ Cincinnati, Sch Med, Dept Pediat, Cincinnati, OH 45219 USA
[8] Cincinnati Childrens Hosp Med Ctr, Div Expt Hematol & Canc Biol, Cincinnati, OH 45229 USA
基金
美国国家卫生研究院;
关键词
ACUTE MYELOID-LEUKEMIA; MYOCARDIAL-INFARCTION; KEY PLAYER; EGR-1; MAINTENANCE; PROGENITORS; ONTOLOGY; MATRIX; HEART;
D O I
10.1093/nar/gkz789
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
To understand the molecular pathogenesis of human disease, precision analyses to define alterations within and between disease-associated cell populations are desperately needed. Single-cell genomics represents an ideal platform to enable the identification and comparison of normal and diseased transcriptional cell populations. We created cellHarmony, an integrated solution for the unsupervised analysis, classification, and comparison of cell types from diverse single-cell RNA-Seq datasets. cellHarmony efficiently and accurately matches single-cell transcriptomes using a community-clustering and alignment strategy to compute differences in cell-type specific gene expression over potentially dozens of cell populations. Such transcriptional differences are used to automatically identify distinct and shared gene programs among cell-types and identify impacted pathways and transcriptional regulatory networks to understand the impact of perturbations at a systems level. cellHarmony is implemented as a python package and as an integrated workflow within the software AltAnalyze. We demonstrate that cellHarmony has improved or equivalent performance to alternative label projection methods, is able to identify the likely cellular origins of malignant states, stratify patients into clinical disease subtypes from identified gene programs, resolve discrete disease networks impacting specific cell-types, and illuminate therapeutic mechanisms. Thus, this approach holds tremendous promise in revealing the molecular and cellular origins of complex disease.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Cell-level metadata are indispensable for documenting single-cell sequencing datasets
    Puntambekar, Sidhant
    Hesselberth, Jay R.
    Riemondy, Kent A.
    Fu, Rui
    PLOS BIOLOGY, 2021, 19 (05)
  • [2] Cell-level somatic mutation detection from single-cell RNA sequencing
    Trung Nghia Vu
    Ha-Nam Nguyen
    Calza, Stefano
    Kalari, Krishna R.
    Wang, Liewei
    Pawitan, Yudi
    BIOINFORMATICS, 2019, 35 (22) : 4679 - 4687
  • [3] Single-cell transcriptomes in space
    Linda Koch
    Nature Reviews Genetics, 2018, 19 : 64 - 65
  • [4] Single-cell analysis reveals context-dependent, cell-level selection of mtDNA
    Kotrys, Anna V.
    Durham, Timothy J.
    Guo, Xiaoyan A.
    Vantaku, Venkata R.
    Parangi, Sareh
    Mootha, Vamsi K.
    NATURE, 2024, 629 (8011) : 458 - +
  • [5] TECHNIQUE Single-cell transcriptomes in space
    Koch, Linda
    NATURE REVIEWS GENETICS, 2018, 19 (02) : 64 - 65
  • [6] Constructing cell lineages from single-cell transcriptomes
    Chen, Jinmiao
    Renia, Laurent
    Ginhoux, Florent
    MOLECULAR ASPECTS OF MEDICINE, 2018, 59 : 95 - 113
  • [7] Single-Cell Sequencing of Brain Cell Transcriptomes and Epigenomes
    Armand, Ethan J.
    Li, Junhao
    Xie, Fangming
    Luo, Chongyuan
    Mukamel, Eran A.
    NEURON, 2021, 109 (01) : 11 - 26
  • [8] Comparison of single-nucleus and single-cell transcriptomes in hepatocellular carcinoma tissue
    Wen, Fei
    Tang, Xiaojie
    Xu, Lin
    Qu, Haixia
    MOLECULAR MEDICINE REPORTS, 2022, 26 (05)
  • [9] Matching queried single-cell open-chromatin profiles to large pools of single-cell transcriptomes and epigenomes for reference supported analysis
    Mishra, Shreya
    Pandey, Neetesh
    Chawla, Smriti
    Sharma, Madhu
    Chandra, Omkar
    Jha, Indra Prakash
    SenGupta, Debarka
    Natarajan, Kedar Nath
    Kumar, Vibhor
    GENOME RESEARCH, 2023, 33 (02) : 218 - 231
  • [10] Significance of single-cell and spatial transcriptomes in cell biology and toxicology
    Duojiao Wu
    Xiaozhuan Liu
    Jiaqiang Zhang
    Li Li
    Xiangdong Wang
    Cell Biology and Toxicology, 2021, 37 : 1 - 5