共 50 条
Piecewise fractional Brownian motion
被引:16
|作者:
Perrin, E
[1
]
Harba, R
Iribarren, I
Jennane, R
机构:
[1] Univ Lyon 1, CNRS, UCBL CPE, UMR 5012,Magnet Nucl Resonance Lab, F-69622 Villeurbanne, France
[2] Univ Orleans, Lab Elect Signals & Images, F-45067 Orleans, France
[3] Cent Univ Venezuela, Fac Ciencias, Dept Math, Caracas, Venezuela
关键词:
fractal;
fractional Brownian motion;
self-similarity;
D O I:
10.1109/TSP.2004.842209
中图分类号:
TM [电工技术];
TN [电子技术、通信技术];
学科分类号:
0808 ;
0809 ;
摘要:
Starting from fractional Brownian motion (fBm) of unique parameter H, a piecewise fractional Brownian motion (pfBm) of parameters H-o H-i, and gamma is defined. This new process has two spectral regimes: It behaves like an fBm of parameter H-o for low frequencies \omega\ < gamma and like an fBm of parameter H-i for high frequencies \omega\ greater than or equal to gamma. When H-o = H-i, or for limit cases gamma --> 0 and gamma --> infinity, pfBm becomes classical fBm. It is shown that pfBm is a continuous, Gaussian, and nonstationary process having continuous, Gaussian, and stationary increments, namely, piecewise fractional Gaussian noises. The asymptotic self-similarity of pfBm is shown according to the considered regime: At large scale, the process is self-similar with parameter H. and with parameter Hi at low scale.
引用
收藏
页码:1211 / 1215
页数:5
相关论文