Piecewise fractional Brownian motion

被引:16
|
作者
Perrin, E [1 ]
Harba, R
Iribarren, I
Jennane, R
机构
[1] Univ Lyon 1, CNRS, UCBL CPE, UMR 5012,Magnet Nucl Resonance Lab, F-69622 Villeurbanne, France
[2] Univ Orleans, Lab Elect Signals & Images, F-45067 Orleans, France
[3] Cent Univ Venezuela, Fac Ciencias, Dept Math, Caracas, Venezuela
关键词
fractal; fractional Brownian motion; self-similarity;
D O I
10.1109/TSP.2004.842209
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Starting from fractional Brownian motion (fBm) of unique parameter H, a piecewise fractional Brownian motion (pfBm) of parameters H-o H-i, and gamma is defined. This new process has two spectral regimes: It behaves like an fBm of parameter H-o for low frequencies \omega\ < gamma and like an fBm of parameter H-i for high frequencies \omega\ greater than or equal to gamma. When H-o = H-i, or for limit cases gamma --> 0 and gamma --> infinity, pfBm becomes classical fBm. It is shown that pfBm is a continuous, Gaussian, and nonstationary process having continuous, Gaussian, and stationary increments, namely, piecewise fractional Gaussian noises. The asymptotic self-similarity of pfBm is shown according to the considered regime: At large scale, the process is self-similar with parameter H. and with parameter Hi at low scale.
引用
收藏
页码:1211 / 1215
页数:5
相关论文
共 50 条