Statistical inference with fractional Brownian motion

被引:1
|
作者
Kukush A. [1 ]
Mishura Y. [1 ]
Valkeila E. [2 ]
机构
[1] Department of Mathematics, Kiev University, 01033 Kiev
[2] Department of Mathematics, University of Helsinki, FIN-00014
关键词
Fractional Brownian motions; Goodness-of-fit test; Hypothesis testing; Volatility estimation;
D O I
10.1023/B:SISP.0000049124.59173.79
中图分类号
学科分类号
摘要
We give a test between two complex hypothesis; namely we test whether a fractional Brownian motion (fBm) has a linear trend against a certain non-linear trend. We study some related questions, like goodness-of-fit test and volatility estimation in these models. © Springer 2005.
引用
收藏
页码:71 / 93
页数:22
相关论文
共 50 条
  • [1] Statistical inference on the drift parameter in fractional Brownian motion with a deterministic drift
    Stiburek, David
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (02) : 892 - 905
  • [2] Bayesian inference for fractional Oscillating Brownian motion
    Araya, Hector
    Slaoui, Meryem
    Torres, Soledad
    COMPUTATIONAL STATISTICS, 2022, 37 (02) : 887 - 907
  • [3] Bayesian inference for fractional Oscillating Brownian motion
    Héctor Araya
    Meryem Slaoui
    Soledad Torres
    Computational Statistics, 2022, 37 : 887 - 907
  • [4] Statistical inference for nth-order mixed fractional Brownian motion with polynomial drift
    El Omari, Mohamed
    MODERN STOCHASTICS-THEORY AND APPLICATIONS, 2025, 12 (02): : 169 - 187
  • [5] STATISTICAL INFERENCE FOR MODELS DRIVEN BY n-TH ORDER FRACTIONAL BROWNIAN MOTION
    Chaouch, Hicham
    El Maroufy, Hamid
    El Omari, Mohamed
    THEORY OF PROBABILITY AND MATHEMATICAL STATISTICS, 2023, : 29 - 43
  • [6] Bayesian inference of scaled versus fractional Brownian motion
    Thapa, Samudrajit
    Park, Seongyu
    Kim, Yeongjin
    Jeon, Jae-Hyung
    Metzler, Ralf
    Lomholt, Michael A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2022, 55 (19)
  • [7] Statistical study of the wavelet analysis of fractional Brownian motion
    Bardet, JM
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2002, 48 (04) : 991 - 999
  • [8] Statistical characteristics of queue with fractional Brownian motion input
    Chen, J.
    Bhatia, H. S.
    Addie, R. G.
    Zukerman, M.
    ELECTRONICS LETTERS, 2015, 51 (09) : 699 - 700
  • [9] Statistical analysis of superstatistical fractional Brownian motion and applications
    Mackala, Arleta
    Magdziarz, Marcin
    PHYSICAL REVIEW E, 2019, 99 (01)
  • [10] Variational inference of fractional Brownian motion with linear computational complexity
    Verdier, Hippolyte
    Laurent, Francois
    Casse, Alhassan
    Vestergaard, Christian L.
    Masson, Jean -Baptiste
    PHYSICAL REVIEW E, 2022, 106 (05)