Reduced-Bias Location-Invariant Extreme Value Index Estimation: A Simulation Study

被引:10
|
作者
Gomes, M. Ivette [1 ,2 ]
Henriques-Rodrigues, Ligia [2 ,3 ]
Miranda, M. Cristina [2 ,4 ]
机构
[1] Univ Lisbon, FCUL, DEIO, P-1749016 Lisbon, Portugal
[2] CEAUL, P-1749016 Lisbon, Portugal
[3] Inst Politecn Tomar, Lisbon, Portugal
[4] Univ Aveiro, ISCA, Lisbon, Portugal
关键词
Adaptive choice; Bias reduction; Extreme value index; Heuristics; Semi-parametric location; scale invariant estimation; Statistics of extremes; TAIL INDEX;
D O I
10.1080/03610918.2010.543297
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article, we deal with semi-parametric corrected-bias estimation of a positive extreme value index (EVI), the primary parameter in statistics of extremes. Under such a context, the classical EVI-estimators are the Hill estimators, based on any intermediate number k of top-order statistics. But these EVI-estimators are not location-invariant, contrarily to the PORT-Hill estimators, which depend on an extra tuning parameter q, with 0q1, and where PORT stands for peaks over random threshold. On the basis of second-order minimum-variance reduced-bias (MVRB) EVI-estimators, we shall here consider PORT-MVRB EVI-estimators. Due to the stability on k of the MVRB EVI-estimates, we propose the use of a heuristic algorithm, for the adaptive choice of k and q, based on the bias pattern of the estimators as a function of k. Applications in the fields of insurance and finance will be provided.
引用
收藏
页码:424 / 447
页数:24
相关论文
共 50 条
  • [41] Extreme Value Distributions: An Overview of Estimation and Simulation
    Abdulali, Bashir Ahmed Albashir
    Abu Bakar, Mohd Aftar
    Ibrahim, Kamarulzaman
    Ariff, Noratiqah Mohd
    JOURNAL OF PROBABILITY AND STATISTICS, 2022, 2022
  • [42] Location invariant heavy tail index estimation with block method
    Hu, Shuang
    Peng, Zuoxiang
    Nadarajah, Saralees
    STATISTICS, 2022, 56 (03) : 479 - 497
  • [43] Estimation of the extreme value index and extreme quantiles under random censoring
    Beirlant J.
    Guillou A.
    Dierckx G.
    Fils-Villetard A.
    Extremes, 2007, 10 (3) : 151 - 174
  • [44] Computational Study of the Adaptive Estimation of the Extreme Value Index with Probability Weighted Moments
    Caeiro, Frederico
    Gomes, M. Ivette
    RECENT DEVELOPMENTS IN STATISTICS AND DATA SCIENCE, SPE2021, 2022, 398 : 29 - 39
  • [45] A class of distribution functions with less bias in extreme value estimation
    de Haan, Laurens
    Canto e Castro, Luisa
    STATISTICS & PROBABILITY LETTERS, 2006, 76 (15) : 1617 - 1624
  • [46] Estimation of the Bias of the Maximum Likelihood Estimators in an Extreme Value Context
    Beirlant, Jan
    Geffray, Segolen
    Guillou, Armelle
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2011, 40 (22) : 3959 - 3971
  • [47] Local Asymptotic Normality in Extreme Value Index Estimation
    Frank Marohn
    Annals of the Institute of Statistical Mathematics, 1997, 49 : 645 - 666
  • [48] Weighted least squares estimation of the extreme value index
    Hüsler, J
    Li, DY
    Müller, S
    STATISTICS & PROBABILITY LETTERS, 2006, 76 (09) : 920 - 930
  • [49] Extreme Value Index Estimation by Means of an Inequality Curve
    Taufer, Emanuele
    Santi, Flavio
    Inverardi, Pier Luigi Novi
    Espa, Giuseppe
    Dickson, Maria Michela
    MATHEMATICS, 2020, 8 (10) : 1 - 17
  • [50] Local asymptotic normality in extreme value index estimation
    Marohn, F
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1997, 49 (04) : 645 - 666