Reduced-Bias Location-Invariant Extreme Value Index Estimation: A Simulation Study

被引:10
|
作者
Gomes, M. Ivette [1 ,2 ]
Henriques-Rodrigues, Ligia [2 ,3 ]
Miranda, M. Cristina [2 ,4 ]
机构
[1] Univ Lisbon, FCUL, DEIO, P-1749016 Lisbon, Portugal
[2] CEAUL, P-1749016 Lisbon, Portugal
[3] Inst Politecn Tomar, Lisbon, Portugal
[4] Univ Aveiro, ISCA, Lisbon, Portugal
关键词
Adaptive choice; Bias reduction; Extreme value index; Heuristics; Semi-parametric location; scale invariant estimation; Statistics of extremes; TAIL INDEX;
D O I
10.1080/03610918.2010.543297
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article, we deal with semi-parametric corrected-bias estimation of a positive extreme value index (EVI), the primary parameter in statistics of extremes. Under such a context, the classical EVI-estimators are the Hill estimators, based on any intermediate number k of top-order statistics. But these EVI-estimators are not location-invariant, contrarily to the PORT-Hill estimators, which depend on an extra tuning parameter q, with 0q1, and where PORT stands for peaks over random threshold. On the basis of second-order minimum-variance reduced-bias (MVRB) EVI-estimators, we shall here consider PORT-MVRB EVI-estimators. Due to the stability on k of the MVRB EVI-estimates, we propose the use of a heuristic algorithm, for the adaptive choice of k and q, based on the bias pattern of the estimators as a function of k. Applications in the fields of insurance and finance will be provided.
引用
收藏
页码:424 / 447
页数:24
相关论文
共 50 条
  • [31] NetMix: A Network-Structured Mixture Model for Reduced-Bias Estimation of Altered Subnetworks
    Reyna, Matthew A.
    Chitra, Uthsav
    Elyanow, Rebecca
    Raphael, Benjamin J.
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2021, 28 (05) : 469 - 484
  • [32] Competitive estimation of the extreme value index
    Gomes, M. Ivette
    Henriques-Rodrigues, Ligia
    STATISTICS & PROBABILITY LETTERS, 2016, 117 : 128 - 135
  • [33] Iterative estimation of the extreme value index
    Müller, S
    Hüsler, J
    METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2005, 7 (02) : 139 - 148
  • [34] Iterative Estimation of the Extreme Value Index
    Samuel Müller
    Jürg Hüsler
    Methodology and Computing in Applied Probability, 2005, 7 : 139 - 148
  • [35] Lehmer's mean-of-order-p extreme value index estimation: a simulation study and applications
    Penalva, Helena
    Ivette Gomes, M.
    Caeiro, Frederico
    Manuela Neves, M.
    JOURNAL OF APPLIED STATISTICS, 2020, 47 (13-15) : 2825 - 2845
  • [36] On maximum likelihood estimation of the extreme value index
    Drees, H
    Ferreira, A
    De Haan, L
    ANNALS OF APPLIED PROBABILITY, 2004, 14 (03): : 1179 - 1201
  • [37] Latent model extreme value index estimation
    Virta, Joni
    Lietzen, Niko
    Viitasaari, Lauri
    Ilmonen, Pauliina
    JOURNAL OF MULTIVARIATE ANALYSIS, 2024, 202
  • [38] ON THE ESTIMATION OF THE EXTREME-VALUE INDEX AND LARGE QUANTILE ESTIMATION
    DEKKERS, ALM
    DEHAAN, L
    ANNALS OF STATISTICS, 1989, 17 (04): : 1795 - 1832
  • [39] Bias correction in extreme value statistics with index around zero
    Cai, Juan-Juan
    de Haan, Laurens
    Zhou, Chen
    EXTREMES, 2013, 16 (02) : 173 - 201
  • [40] Bias correction in extreme value statistics with index around zero
    Juan-Juan Cai
    Laurens de Haan
    Chen Zhou
    Extremes, 2013, 16 : 173 - 201