Bias correction in extreme value statistics with index around zero

被引:32
|
作者
Cai, Juan-Juan [1 ]
de Haan, Laurens [2 ,3 ]
Zhou, Chen [3 ,4 ]
机构
[1] Tilburg Univ, Dept Econometr & OR, NL-5000 LE Tilburg, Netherlands
[2] Univ Lisbon, P-1699 Lisbon, Portugal
[3] Erasmus Univ, Dept Econ, NL-3000 DR Rotterdam, Netherlands
[4] Nederlandsche Bank, Econ & Res Div, NL-1000 AB Amsterdam, Netherlands
关键词
The probability weighted moment estimator; Extreme value index; Bias correction; High quantile estimation; Endpoint estimation; TAIL INDEX; REDUCTION; ESTIMATOR; PARAMETER;
D O I
10.1007/s10687-012-0158-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Applying extreme value statistics in meteorology and environmental science requires accurate estimators on extreme value indices that can be around zero. Without having prior knowledge on the sign of the extreme value indices, the probability weighted moment (PWM) estimator is a favorable candidate. As most other estimators on the extreme value index, the PWM estimator bears an asymptotic bias. In this paper, we develop a bias correction procedure for the PWM estimator. Moreover, we provide bias-corrected PWM estimators for high quantiles and, when the extreme value index is negative, the endpoint of a distribution. The choice of k, the number of high order statistics used for estimation, is crucial in applications. The asymptotically unbiased PWM estimators allows the choice of higher level k, which results in a lower asymptotic variance. Moreover, since the bias-corrected PWM estimators can be applied for a wider range of k compared to the original PWM estimator, one gets more flexibility in choosing k for finite sample applications. All advantages become apparent in simulations and an environmental application on estimating "once per 10,000 years" still water level at Hoek van Holland, The Netherlands.
引用
收藏
页码:173 / 201
页数:29
相关论文
共 50 条
  • [1] Bias correction in extreme value statistics with index around zero
    Juan-Juan Cai
    Laurens de Haan
    Chen Zhou
    Extremes, 2013, 16 : 173 - 201
  • [2] Some comments on the estimation of a dependence index in bivariate extreme value statistics
    Beirlant, J
    Vandewalle, B
    STATISTICS & PROBABILITY LETTERS, 2002, 60 (03) : 265 - 278
  • [3] Reduced-bias kernel estimators of a positive extreme value index
    Caeiro, Frederico
    Henriques-Rodrigues, Ligia
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (17) : 5867 - 5880
  • [4] New Reduced-bias Estimators of a Positive Extreme Value Index
    Ivette Gomes, M.
    Fatima Brilhante, M.
    Pestana, Dinis
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2016, 45 (03) : 833 - 862
  • [5] IMPROVING SECOND ORDER REDUCED BIAS EXTREME VALUE INDEX ESTIMATION
    Gomes, M. Ivette
    Martins, M. Joao
    Neves, Manuela
    REVSTAT-STATISTICAL JOURNAL, 2007, 5 (02) : 177 - 207
  • [6] Condensation and extreme value statistics
    Evans, Martin R.
    Majumdar, Satya N.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2008,
  • [7] Adapting extreme value statistics to financial time series: dealing with bias and serial dependence
    Laurens de Haan
    Cécile Mercadier
    Chen Zhou
    Finance and Stochastics, 2016, 20 : 321 - 354
  • [8] Improving extreme value statistics
    Shekhawat, Ashivni
    PHYSICAL REVIEW E, 2014, 90 (05):
  • [9] Adapting extreme value statistics to financial time series: dealing with bias and serial dependence
    de Haan, Laurens
    Mercadier, Cecile
    Zhou, Chen
    FINANCE AND STOCHASTICS, 2016, 20 (02) : 321 - 354
  • [10] Roughness correction to the Casimir force at short separations: Contact distance and extreme value statistics
    Broer, Wijnand
    Palasantzas, George
    Knoester, Jasper
    Svetovoy, Vitaly B.
    PHYSICAL REVIEW B, 2012, 85 (15)