Estimation of the Bias of the Maximum Likelihood Estimators in an Extreme Value Context

被引:0
|
作者
Beirlant, Jan [3 ]
Geffray, Segolen [2 ]
Guillou, Armelle [1 ,2 ]
机构
[1] Univ Strasbourg, Inst Rech Math Avancee, UMR 7501, F-67084 Strasbourg, France
[2] CNRS, F-67084 Strasbourg, France
[3] Katholieke Univ Leuven, Univ Leuven, Louvain, Belgium
关键词
Bias; Maximum likelihood estimators; Newton-Raphson algorithm; VALUE INDEX;
D O I
10.1080/03610921003764258
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Interest is centered on the maximum likelihood (ML) estimators of the parameters of the Generalized Pareto Distribution in an extreme value context. Our aim consists of reducing the bias of these estimates for which no explicit expression is available. To circumvent this difficulty, we prove that these estimators are asymptotically equivalent to one-step estimators introduced by Beirlant et al. (2010) in a right-censoring context. Then, using this equivalence property, we estimate the bias of these one-step estimators to approximate the asymptotic bias of the ML-estimators. Finally, a small simulation study and an application to a real data set are provided to illustrate that these new estimators actually exhibit reduced bias.
引用
收藏
页码:3959 / 3971
页数:13
相关论文
共 50 条
  • [1] On bias in maximum likelihood estimators
    Mardia, KV
    Southworth, HR
    Taylor, CC
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1999, 76 (1-2) : 31 - 39
  • [2] On maximum likelihood estimation of the extreme value index
    Drees, H
    Ferreira, A
    De Haan, L
    ANNALS OF APPLIED PROBABILITY, 2004, 14 (03): : 1179 - 1201
  • [3] Generalized maximum likelihood estimators for the nonstationary generalized extreme value model
    El Adlouni, S.
    Ouarda, T. B. M. J.
    Zhang, X.
    Roy, R.
    Bobee, B.
    WATER RESOURCES RESEARCH, 2007, 43 (03)
  • [4] Exploiting Structure of Maximum Likelihood Estimators for Extreme Value Threshold Selection
    Wadsworth, J. L.
    TECHNOMETRICS, 2016, 58 (01) : 116 - 126
  • [5] Strong consistency of maximum likelihood estimators in extreme-maximum-value distribution model
    Yin, Chang-Ming
    Chen, Bo-Hong
    Liu, Shuang-Hua
    DEVELOPMENT OF INDUSTRIAL MANUFACTURING, 2014, 525 : 671 - 676
  • [6] Revisiting the maximum likelihood estimation of a positive extreme value index
    Caeiro F.
    Gomes M.I.
    Journal of Statistical Theory and Practice, 2015, 9 (1) : 200 - 218
  • [7] Maximum likelihood estimation of extreme value index for irregular cases
    Peng, Liang
    Qi, Yongcheng
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2009, 139 (09) : 3361 - 3376
  • [8] Methods of Estimation and Bias Corrected Maximum Likelihood Estimators of Unit Burr III Distribution
    Dey S.
    Wang L.
    American Journal of Mathematical and Management Sciences, 2022, 41 (04) : 316 - 333
  • [9] Bias Correction for Alternating Iterative Maximum Likelihood Estimators
    Gang YU
    Wei GAO
    Ningzhong SHI
    Journal of Mathematical Research with Applications, 2013, (01) : 1 - 10
  • [10] Bias Correction for Alternating Iterative Maximum Likelihood Estimators
    Gang YU
    Wei GAO
    Ningzhong SHI
    数学研究及应用, 2013, 33 (01) : 1 - 10