Estimation of the Bias of the Maximum Likelihood Estimators in an Extreme Value Context

被引:0
|
作者
Beirlant, Jan [3 ]
Geffray, Segolen [2 ]
Guillou, Armelle [1 ,2 ]
机构
[1] Univ Strasbourg, Inst Rech Math Avancee, UMR 7501, F-67084 Strasbourg, France
[2] CNRS, F-67084 Strasbourg, France
[3] Katholieke Univ Leuven, Univ Leuven, Louvain, Belgium
关键词
Bias; Maximum likelihood estimators; Newton-Raphson algorithm; VALUE INDEX;
D O I
10.1080/03610921003764258
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Interest is centered on the maximum likelihood (ML) estimators of the parameters of the Generalized Pareto Distribution in an extreme value context. Our aim consists of reducing the bias of these estimates for which no explicit expression is available. To circumvent this difficulty, we prove that these estimators are asymptotically equivalent to one-step estimators introduced by Beirlant et al. (2010) in a right-censoring context. Then, using this equivalence property, we estimate the bias of these one-step estimators to approximate the asymptotic bias of the ML-estimators. Finally, a small simulation study and an application to a real data set are provided to illustrate that these new estimators actually exhibit reduced bias.
引用
收藏
页码:3959 / 3971
页数:13
相关论文
共 50 条