Location invariant heavy tail index estimation with block method

被引:1
|
作者
Hu, Shuang [1 ]
Peng, Zuoxiang [1 ]
Nadarajah, Saralees [2 ]
机构
[1] Southwest Univ, Sch Math & Stat, Chongqing, Peoples R China
[2] Univ Manchester, Dept Math, Manchester, Lancs, England
关键词
Asymptotic normality; consistency; Hill-type estimator; Primary; Secondary; HILL;
D O I
10.1080/02331888.2022.2071898
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Motivated by the work of Qi [On the tail index of a heavy tailed distribution. Ann Inst Stat Math. 2010;62:277-298] and Fraga Alves [A location invariant Hill-type estimator. Extremes. 2001b;4:199-217], a new class of location invariant Hill-type estimators for heavy tail index is proposed. The weak consistency of the estimator is studied, the asymptotic expansion and limit distribution of the estimator are derived under second-order regular varying conditions. Simulation studies are performed to compare the new estimator with closely related estimators.
引用
收藏
页码:479 / 497
页数:19
相关论文
共 50 条
  • [1] Asymptotic normality of location invariant heavy tail index estimator
    Jiaona Li
    Zuoxiang Peng
    Saralees Nadarajah
    Extremes, 2010, 13 : 269 - 290
  • [2] Asymptotic normality of location invariant heavy tail index estimator
    Li, Jiaona
    Peng, Zuoxiang
    Nadarajah, Saralees
    EXTREMES, 2010, 13 (03) : 269 - 290
  • [3] Heavy tail index estimation based on block order statistics
    Xiong, Li
    Peng, Zuoxiang
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2020, 90 (12) : 2198 - 2208
  • [4] Location-invariant reduced-bias tail index estimation under a third-order framework
    Henriques-Rodrigues L.
    Gomes M.I.
    Journal of Statistical Theory and Practice, 2018, 12 (2) : 206 - 230
  • [5] Estimation of the tail-index in a conditional location-scale family of heavy-tailed distributions
    Ahmad, Aboubacrene Ag
    Deme, El Hadji
    Diop, Moo
    Girard, Stephane
    DEPENDENCE MODELING, 2019, 7 (01): : 394 - 417
  • [6] An Enhanced Method for Tail Index Estimation under Missingness
    Ayiah-Mensah F.
    Minkah R.
    Asiedu L.
    Mettle F.O.
    Journal of Applied Mathematics, 2021, 2021
  • [7] Bayesian estimation of the tail index of a heavy tailed distribution under random censoring
    Ameraoui, Abdelkader
    Boukhetala, Kamal
    Dupuy, Jean-Francois
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2016, 104 : 148 - 168
  • [8] A location-invariant probability weighted moment estimation of the Extreme Value Index
    Caeiro, Frederico
    Ivette Gomes, M.
    Henriques-Rodrigues, Ligia
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2016, 93 (04) : 676 - 695
  • [9] On the estimation of a changepoint in a tail index
    Gadeikis K.
    Paulauskas V.
    Lithuanian Mathematical Journal, 2005, 45 (3) : 272 - 283
  • [10] Robustness of tail index estimation
    Hsieh, PH
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 1999, 8 (02) : 318 - 332