Above-ground biomass estimation from LiDAR data using random forest algorithms

被引:57
|
作者
Torre-Tojal, Leyre [1 ]
Bastarrika, Aitor [1 ]
Boyano, Ana [2 ]
Manuel Lopez-Guede, Jose [3 ,5 ]
Grana, Manuel [4 ,5 ]
机构
[1] Univ Basque Country, Fac Engn, UPV EHU, Dept Min & Met Engn & Mat Sci, Nieves Cano 12, Vitoria 01006, Spain
[2] Univ Basque Country, Fac Engn Vitoria Gasteiz, Mech Engn Dept, UPV EHU, Nieves Cano 12, Vitoria 01006, Spain
[3] Univ Basque Country, UPV EHU, Dept Syst Engn & Automat Control, Fac Engn, Nieves Cano 12, Vitoria 01006, Spain
[4] Univ Basque Country, Fac Comp Sci, UPV EHU, Dept Comp Sci & Artificial Intelligence, Paseo Manuel De Lardizabal 1, Donostia San Sebastian 20018, Spain
[5] Univ Basque Country, Computat Intelligence Grp, UPV EHU, Vitoria, Spain
关键词
LiDAR; Biomass; Regression; Random forest; RADIATA D. DON; AIRBORNE LIDAR; DISCRETE-RETURN; GROUND BIOMASS; TREE; HEIGHT; VOLUME; COVER; EQUATIONS; QUICKBIRD;
D O I
10.1016/j.jocs.2021.101517
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Random forest (RF) models were developed to estimate the biomass for the Pinus radiata species in a region of the Basque Autonomous Community where this species has high cover, using the National Forest Inventory, allometric equations and low-density discrete LiDAR data. This article explores the tuning for RF hyperparameters, obtaining two models with an R-2 higher than 0.7 using 2-fold cross-validation. The models selected were applied in Orozko, a municipality with more than 5000 ha of this species, where the model predicts a biomass of 1.06-1.08 Mton, which is between 16-18 % higher than the biomass predicted by the Basque Government.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Above-Ground Biomass and Biomass Components Estimation Using LiDAR Data in a Coniferous Forest
    He, Qisheng
    Chen, Erxue
    An, Ru
    Li, Yong
    FORESTS, 2013, 4 (04) : 984 - 1002
  • [2] Estimation of Above-Ground Forest Biomass in Nepal by the Use of Airborne LiDAR, and Forest Inventory Data
    Bahadur, K. C. Yam
    Liu, Qijing
    Saud, Pradip
    Gaire, Damodar
    Adhikari, Hari
    LAND, 2024, 13 (02)
  • [3] Estimation of above-ground forest biomass using metrics based on Gaussian decomposition of waveform lidar data
    Zhuang, Wei
    Mountrakis, Giorgos
    Wiley, John J., Jr.
    Beier, Colin M.
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2015, 36 (07) : 1871 - 1889
  • [4] Deep point cloud regression for above-ground forest biomass estimation from airborne LiDAR
    Oehmcke, Stefan
    Li, Lei
    Trepekli, Katerina
    Revenga, Jaime C.
    Nord-Larsen, Thomas
    Gieseke, Fabian
    Igel, Christian
    REMOTE SENSING OF ENVIRONMENT, 2024, 302
  • [5] COMPONENT FOREST ABOVE GROUND BIOMASS ESTIMATION USING LIDAR AND SAR DATA
    Zeng, Peng
    Shi, Jianmin
    Huang, Jimao
    Zhang, Yongxin
    Zhang, Wangfei
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 6395 - 6398
  • [6] Research on Rapeseed Above-Ground Biomass Estimation Based on Spectral and LiDAR Data
    Jiang, Yihan
    Wu, Fang
    Zhu, Shaolong
    Zhang, Weijun
    Wu, Fei
    Yang, Tianle
    Yang, Guanshuo
    Zhao, Yuanyuan
    Sun, Chengming
    Liu, Tao
    AGRONOMY-BASEL, 2024, 14 (08):
  • [7] Above-ground biomass estimation of a secondary forest in Sarawak
    Chai, F.Y.C.
    Journal of Tropical Forest Science, 1997, 9 (03): : 359 - 368
  • [8] Above-ground biomass estimation using airborne discrete-return and full-waveform LiDAR data in a coniferous forest
    Nie, Sheng
    Wang, Cheng
    Zeng, Hongcheng
    Xi, Xiaohuan
    Li, Guicai
    ECOLOGICAL INDICATORS, 2017, 78 : 221 - 228
  • [9] Estimation of Voxel-Based Above-Ground Biomass Using Airborne LiDAR Data in an Intact Tropical Rain Forest, Brunei
    Kim, Eunji
    Lee, Woo-Kyun
    Yoon, Mihae
    Lee, Jong-Yeol
    Son, Yowhan
    Abu Salim, Kamariah
    FORESTS, 2016, 7 (11):
  • [10] Estimating above-ground biomass of subtropical forest using airborne LiDAR in Hong Kong
    Chan, Evian Pui Yan
    Fung, Tung
    Wong, Frankie Kwan Kit
    SCIENTIFIC REPORTS, 2021, 11 (01)