Above-ground biomass estimation from LiDAR data using random forest algorithms

被引:57
|
作者
Torre-Tojal, Leyre [1 ]
Bastarrika, Aitor [1 ]
Boyano, Ana [2 ]
Manuel Lopez-Guede, Jose [3 ,5 ]
Grana, Manuel [4 ,5 ]
机构
[1] Univ Basque Country, Fac Engn, UPV EHU, Dept Min & Met Engn & Mat Sci, Nieves Cano 12, Vitoria 01006, Spain
[2] Univ Basque Country, Fac Engn Vitoria Gasteiz, Mech Engn Dept, UPV EHU, Nieves Cano 12, Vitoria 01006, Spain
[3] Univ Basque Country, UPV EHU, Dept Syst Engn & Automat Control, Fac Engn, Nieves Cano 12, Vitoria 01006, Spain
[4] Univ Basque Country, Fac Comp Sci, UPV EHU, Dept Comp Sci & Artificial Intelligence, Paseo Manuel De Lardizabal 1, Donostia San Sebastian 20018, Spain
[5] Univ Basque Country, Computat Intelligence Grp, UPV EHU, Vitoria, Spain
关键词
LiDAR; Biomass; Regression; Random forest; RADIATA D. DON; AIRBORNE LIDAR; DISCRETE-RETURN; GROUND BIOMASS; TREE; HEIGHT; VOLUME; COVER; EQUATIONS; QUICKBIRD;
D O I
10.1016/j.jocs.2021.101517
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Random forest (RF) models were developed to estimate the biomass for the Pinus radiata species in a region of the Basque Autonomous Community where this species has high cover, using the National Forest Inventory, allometric equations and low-density discrete LiDAR data. This article explores the tuning for RF hyperparameters, obtaining two models with an R-2 higher than 0.7 using 2-fold cross-validation. The models selected were applied in Orozko, a municipality with more than 5000 ha of this species, where the model predicts a biomass of 1.06-1.08 Mton, which is between 16-18 % higher than the biomass predicted by the Basque Government.
引用
收藏
页数:14
相关论文
共 50 条
  • [11] Above-Ground Biomass Estimation of Plantation with Different Tree Species Using Airborne LiDAR and Hyperspectral Data
    Gao, Linghan
    Chai, Guoqi
    Zhang, Xiaoli
    REMOTE SENSING, 2022, 14 (11)
  • [12] Satellite estimation of tropical secondary forest above-ground biomass: data from Brazil and Bolivia
    Steininger, MK
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2000, 21 (6-7) : 1139 - 1157
  • [13] Estimation of Above-Ground Biomass for Dendrocalamus Giganteus Utilizing Spaceborne LiDAR GEDI Data
    Yang, Huanfen
    Qin, Zhen
    Shu, Qingtai
    Xu, Li
    Yu, Jinge
    Luo, Shaolong
    Wu, Zaikun
    Xia, Cuifen
    Yang, Zhengdao
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2025, 18 : 5271 - 5286
  • [14] Estimating above-ground biomass of subtropical forest using airborne LiDAR in Hong Kong
    Evian Pui Yan Chan
    Tung Fung
    Frankie Kwan Kit Wong
    Scientific Reports, 11
  • [15] Above ground biomass estimation in an African tropical forest with lidar and hyperspectral data
    Laurin, Gaia Vaglio
    Chen, Qi
    Lindsell, Jeremy A.
    Coomes, David A.
    Del Frate, Fabio
    Guerriero, Leila
    Pirotti, Francesco
    Valentini, Riccardo
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2014, 89 : 49 - 58
  • [16] Improved country-wide estimation of above-ground tropical forest biomass using locally calibrated GEDI spaceborne LiDAR data
    Zhou, Yuchuan
    Taylor, David M.
    Tang, Hao
    ENVIRONMENTAL RESEARCH LETTERS, 2025, 20 (01):
  • [17] Remote sensing estimation of forest above-ground biomass based on spaceborne lidar ICESat-2/ATLAS data
    Song, Hanyue
    Shu, Qingtai
    Xi, Lei
    Qiu, Shuang
    Wei, Zhiyue
    Yang, Zezhi
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2022, 38 (10): : 191 - 199
  • [18] Estimation of above-ground biomass using machine learning approaches with InSAR and LiDAR data in tropical peat swamp forest of Brunei Darussalam
    Zadbagher, Elaheh
    Marangoz, Aycan Murat
    Becek, Kazimierz
    IFOREST-BIOGEOSCIENCES AND FORESTRY, 2024, 17 : 172 - 179
  • [19] Estimation of above ground biomass in boreal forest using ground-based Lidar
    Taheriazad, L.
    Moghadas, H.
    Sanchez-Azofeifa, A.
    3RD INTERNATIONAL CONFERENCE ON ADVANCES IN ENVIRONMENT RESEARCH, 2017, 2017, 68
  • [20] Optimal Combination of Predictors and Algorithms for Forest Above-Ground Biomass Mapping from Sentinel and SRTM Data
    Chen, Lin
    Wang, Yeqiao
    Ren, Chunying
    Zhang, Bai
    Wang, Zongming
    REMOTE SENSING, 2019, 11 (04)