Above-ground biomass estimation from LiDAR data using random forest algorithms

被引:57
|
作者
Torre-Tojal, Leyre [1 ]
Bastarrika, Aitor [1 ]
Boyano, Ana [2 ]
Manuel Lopez-Guede, Jose [3 ,5 ]
Grana, Manuel [4 ,5 ]
机构
[1] Univ Basque Country, Fac Engn, UPV EHU, Dept Min & Met Engn & Mat Sci, Nieves Cano 12, Vitoria 01006, Spain
[2] Univ Basque Country, Fac Engn Vitoria Gasteiz, Mech Engn Dept, UPV EHU, Nieves Cano 12, Vitoria 01006, Spain
[3] Univ Basque Country, UPV EHU, Dept Syst Engn & Automat Control, Fac Engn, Nieves Cano 12, Vitoria 01006, Spain
[4] Univ Basque Country, Fac Comp Sci, UPV EHU, Dept Comp Sci & Artificial Intelligence, Paseo Manuel De Lardizabal 1, Donostia San Sebastian 20018, Spain
[5] Univ Basque Country, Computat Intelligence Grp, UPV EHU, Vitoria, Spain
关键词
LiDAR; Biomass; Regression; Random forest; RADIATA D. DON; AIRBORNE LIDAR; DISCRETE-RETURN; GROUND BIOMASS; TREE; HEIGHT; VOLUME; COVER; EQUATIONS; QUICKBIRD;
D O I
10.1016/j.jocs.2021.101517
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Random forest (RF) models were developed to estimate the biomass for the Pinus radiata species in a region of the Basque Autonomous Community where this species has high cover, using the National Forest Inventory, allometric equations and low-density discrete LiDAR data. This article explores the tuning for RF hyperparameters, obtaining two models with an R-2 higher than 0.7 using 2-fold cross-validation. The models selected were applied in Orozko, a municipality with more than 5000 ha of this species, where the model predicts a biomass of 1.06-1.08 Mton, which is between 16-18 % higher than the biomass predicted by the Basque Government.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Estimation of above-ground biomass of large tropical trees with terrestrial LiDAR
    de Tanago, Jose Gonzalez
    Lau, Alvaro
    Bartholomeus, Harm
    Herold, Martin
    Avitabile, Valerio
    Raumonen, Pasi
    Martius, Christopher
    Goodman, Rosa C.
    Disney, Mathias
    Manuri, Solichin
    Burt, Andrew
    Calders, Kim
    METHODS IN ECOLOGY AND EVOLUTION, 2018, 9 (02): : 223 - 234
  • [22] Forest above-ground woody biomass estimation using multi-temporal space-borne LiDAR data in a managed forest at Haldwani, India
    Musthafa, Mohamed
    Singh, Gulab
    ADVANCES IN SPACE RESEARCH, 2022, 69 (09) : 3245 - 3257
  • [23] Improving mangrove above-ground biomass estimates using LiDAR
    Salum, Rafaela B.
    Souza-Filho, Pedro Walfir M.
    Simard, Marc
    Silva, Carlos Alberto
    Fernandes, Marcus E. B.
    Cougo, Michele F.
    do Nascimento Junior, Wilson
    Rogers, Kerrylee
    ESTUARINE COASTAL AND SHELF SCIENCE, 2020, 236
  • [24] Estimating Above-Ground Biomass of Potato Using Random Forest and Optimized Hyperspectral Indices
    Yang, Haibo
    Li, Fei
    Wang, Wei
    Yu, Kang
    REMOTE SENSING, 2021, 13 (12)
  • [25] Mapping the height and above-ground biomass of a mixed forest using lidar and stereo Ikonos images
    St-Onge, B.
    Hu, Y.
    Vega, C.
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2008, 29 (05) : 1277 - 1294
  • [26] Evaluation of allometries for estimating above-ground biomass using airborne LiDAR data in tropical montane forest of Northern Borneo
    Loh, Ho Yan
    James, Daniel
    Liew, Jim Jun Fei
    Ioki, Keiko
    Phua, Mui-How
    10TH IGRSM INTERNATIONAL CONFERENCE AND EXHIBITION ON GEOSPATIAL & REMOTE SENSING, 2020, 540
  • [27] Estimation of Above Ground Biomass in a Tropical Mountain Forest in Southern Ecuador Using Airborne LiDAR Data
    Gonzalez-Jaramillo, Victor
    Fries, Andreas
    Zeilinger, Joerg
    Homeier, Juergen
    Paladines-Benitez, Jhoana
    Bendix, Joerg
    REMOTE SENSING, 2018, 10 (05)
  • [28] Upscaling coniferous forest above-ground biomass based on airborne LiDAR and satellite ALOS PALSAR data
    Li, Wang
    Niu, Zheng
    Li, Zengyuan
    Wang, Cheng
    Wu, Mingquan
    Muhammad, Shakir
    JOURNAL OF APPLIED REMOTE SENSING, 2016, 10
  • [29] Assessment of Forest Above-Ground Biomass Estimation from PolInSAR in the Presence of Temporal Decorrelation
    Ghasemi, Nafiseh
    Tolpekin, Valentyn
    Stein, Alfred
    REMOTE SENSING, 2018, 10 (06)
  • [30] Above-ground biomass change estimation using national forest inventory data with Sentinel-2 and Landsat
    Puliti, S.
    Breidenbach, J.
    Schumacher, J.
    Hauglin, M.
    Klingenberg, T. F.
    Astrup, R.
    REMOTE SENSING OF ENVIRONMENT, 2021, 265