Above-ground biomass estimation from LiDAR data using random forest algorithms

被引:57
|
作者
Torre-Tojal, Leyre [1 ]
Bastarrika, Aitor [1 ]
Boyano, Ana [2 ]
Manuel Lopez-Guede, Jose [3 ,5 ]
Grana, Manuel [4 ,5 ]
机构
[1] Univ Basque Country, Fac Engn, UPV EHU, Dept Min & Met Engn & Mat Sci, Nieves Cano 12, Vitoria 01006, Spain
[2] Univ Basque Country, Fac Engn Vitoria Gasteiz, Mech Engn Dept, UPV EHU, Nieves Cano 12, Vitoria 01006, Spain
[3] Univ Basque Country, UPV EHU, Dept Syst Engn & Automat Control, Fac Engn, Nieves Cano 12, Vitoria 01006, Spain
[4] Univ Basque Country, Fac Comp Sci, UPV EHU, Dept Comp Sci & Artificial Intelligence, Paseo Manuel De Lardizabal 1, Donostia San Sebastian 20018, Spain
[5] Univ Basque Country, Computat Intelligence Grp, UPV EHU, Vitoria, Spain
关键词
LiDAR; Biomass; Regression; Random forest; RADIATA D. DON; AIRBORNE LIDAR; DISCRETE-RETURN; GROUND BIOMASS; TREE; HEIGHT; VOLUME; COVER; EQUATIONS; QUICKBIRD;
D O I
10.1016/j.jocs.2021.101517
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Random forest (RF) models were developed to estimate the biomass for the Pinus radiata species in a region of the Basque Autonomous Community where this species has high cover, using the National Forest Inventory, allometric equations and low-density discrete LiDAR data. This article explores the tuning for RF hyperparameters, obtaining two models with an R-2 higher than 0.7 using 2-fold cross-validation. The models selected were applied in Orozko, a municipality with more than 5000 ha of this species, where the model predicts a biomass of 1.06-1.08 Mton, which is between 16-18 % higher than the biomass predicted by the Basque Government.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Above-ground biomass estimation of Indian tropical forests using X band Pol-InSAR and Random Forest
    Yadav, Sadhana
    Padalia, Hitendra
    Sinha, Sanjiv K.
    Srinet, Ritika
    Chauhan, Prakash
    REMOTE SENSING APPLICATIONS-SOCIETY AND ENVIRONMENT, 2021, 21
  • [32] Exploring the Inclusion of Small Regenerating Trees to Improve Above-Ground Forest Biomass Estimation Using Geospatial Data
    Le, Anh, V
    Paull, David J.
    Griffin, Amy L.
    REMOTE SENSING, 2018, 10 (09)
  • [33] Above-ground biomass estimation in a Mediterranean sparse coppice oak forest using Sentinel-2 data
    Moradi, Fardin
    Sadeghi, Seyed Mohamad Moein
    Heidarlou, Hadi Beygi
    Deljouei, Azade
    Boshkar, Erfan
    Borz, Stelian Alexandru
    ANNALS OF FOREST RESEARCH, 2022, 65 (01) : 165 - 182
  • [34] Optimal Support Vector Machines for Forest Above-ground Biomass Estimation from Multisource Remote Sensing Data
    Guo, Ying
    Li, Zengyuan
    Zhang, Xu
    Chen, Er-xue
    Bai, Lina
    Tian, Xin
    He, Qisheng
    Feng, Qi
    Li, Wenmen
    2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, : 6388 - 6391
  • [35] On spatial variability of above-ground forest biomass
    Tajchman, S
    Benyon, R
    Bren, L
    Kochenderfer, J
    Pan, CS
    BIOMASS & BIOENERGY, 1996, 11 (05): : 383 - 386
  • [36] A Validated and Accurate Method for Quantifying and Extrapolating Mangrove Above-Ground Biomass Using LiDAR Data
    Salum, Rafaela B.
    Robinson, Sharon A.
    Rogers, Kerrylee
    REMOTE SENSING, 2021, 13 (14)
  • [37] Estimating Above-Ground Biomass of Araucaria angustifolia (Bertol.) Kuntze Using LiDAR Data
    Rex, Franciel Eduardo
    Dalla Corte, Ana Paula
    Machado, Sebastiao do Amaral
    Silvan, Carlos Alberto
    Sanquetta, Carlos Roberto
    FLORESTA E AMBIENTE, 2019, 26 (04):
  • [38] Detection of large above-ground biomass variability in lowland forest ecosystems by airborne LiDAR
    Jubanski, J.
    Ballhorn, U.
    Kronseder, K.
    Franke, J.
    Siegert, F.
    BIOGEOSCIENCES, 2013, 10 (06) : 3917 - 3930
  • [39] MAPPING FOREST ABOVE-GROUND BIOMASS AND ITS CHANGES FROM LVIS WAVEFORM DATA
    Huang, Wenli
    Sun, Guoqing
    Dubayah, Ralph
    Zhang, Zhiyu
    Ni, Wenjian
    2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, : 6561 - 6564
  • [40] InSAR-based estimation of forest above-ground biomass using phase histogram technique
    Wu, Chuanjun
    Shen, Peng
    Tebaldini, Stefano
    Liao, Mingsheng
    Zhang, Lu
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2025, 136