COMPONENT FOREST ABOVE GROUND BIOMASS ESTIMATION USING LIDAR AND SAR DATA

被引:3
|
作者
Zeng, Peng [1 ]
Shi, Jianmin [1 ]
Huang, Jimao [2 ]
Zhang, Yongxin [1 ]
Zhang, Wangfei [1 ]
机构
[1] Southwest Forestry Univ, Coll Forestry, Kunming, Yunnan, Peoples R China
[2] Southwest Forestry Univ, Sch Geog & Ecotourism, Kunming, Yunnan, Peoples R China
基金
中国国家自然科学基金;
关键词
Components AGB; LiDAR; SAR; ABOVEGROUND BIOMASS;
D O I
10.1109/IGARSS46834.2022.9883852
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Forest biomass plays an essential role in forest carbon reservoirs studies, biodiversity protection, forest management, and climate change mitigation actions. Parameters extracted from Light Detection and Ranging (LiDAR) and X-band Synthetic Aperture Radar (SAR) data were used in separately and in combination to estimate total forest aboveground biomass (AGB), but rarely used in components AGB estimation. In this paper, we extracted intensity, density, and height parameters from LiDAR data, coherence coefficients from Interferometric SAR (InSAR) data, backscatter coefficients and polarimetric decomposition parameters from Polarimetric SAR (PolSAR) to estimate forest total and components AGB. The results showed that PolSAR parameters have a unique advantage to estimate leaf biomass, with the highest R-2 of 0.773. And for total, bark and branch AGB, LiDAR, InSAR and PolSAR parameter combination have better accuracy, with R-2 of 0.818, 0.834, and 0.842, respectively. The study revealed that LiDAR and SAR used in combination can effectively estimation the forest total and components AGB.
引用
收藏
页码:6395 / 6398
页数:4
相关论文
共 50 条
  • [1] Above-Ground Biomass and Biomass Components Estimation Using LiDAR Data in a Coniferous Forest
    He, Qisheng
    Chen, Erxue
    An, Ru
    Li, Yong
    FORESTS, 2013, 4 (04) : 984 - 1002
  • [2] Above-ground biomass estimation from LiDAR data using random forest algorithms
    Torre-Tojal, Leyre
    Bastarrika, Aitor
    Boyano, Ana
    Manuel Lopez-Guede, Jose
    Grana, Manuel
    JOURNAL OF COMPUTATIONAL SCIENCE, 2022, 58
  • [3] Above ground biomass estimation in an African tropical forest with lidar and hyperspectral data
    Laurin, Gaia Vaglio
    Chen, Qi
    Lindsell, Jeremy A.
    Coomes, David A.
    Del Frate, Fabio
    Guerriero, Leila
    Pirotti, Francesco
    Valentini, Riccardo
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2014, 89 : 49 - 58
  • [4] Estimation of above ground biomass in boreal forest using ground-based Lidar
    Taheriazad, L.
    Moghadas, H.
    Sanchez-Azofeifa, A.
    3RD INTERNATIONAL CONFERENCE ON ADVANCES IN ENVIRONMENT RESEARCH, 2017, 2017, 68
  • [5] Estimation of Above Ground Biomass in a Tropical Mountain Forest in Southern Ecuador Using Airborne LiDAR Data
    Gonzalez-Jaramillo, Victor
    Fries, Andreas
    Zeilinger, Joerg
    Homeier, Juergen
    Paladines-Benitez, Jhoana
    Bendix, Joerg
    REMOTE SENSING, 2018, 10 (05)
  • [6] GA-SVR Algorithm for Improving Forest Above Ground Biomass Estimation Using SAR Data
    Ji, Yongjie
    Xu, Kunpeng
    Zeng, Peng
    Zhang, Wangfei
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 6585 - 6595
  • [7] Estimation of Above-Ground Forest Biomass in Nepal by the Use of Airborne LiDAR, and Forest Inventory Data
    Bahadur, K. C. Yam
    Liu, Qijing
    Saud, Pradip
    Gaire, Damodar
    Adhikari, Hari
    LAND, 2024, 13 (02)
  • [8] Estimation of above-ground forest biomass using metrics based on Gaussian decomposition of waveform lidar data
    Zhuang, Wei
    Mountrakis, Giorgos
    Wiley, John J., Jr.
    Beier, Colin M.
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2015, 36 (07) : 1871 - 1889
  • [9] Above ground biomass estimation across forest types at different degradation levels in Central Kalimantan using LiDAR data
    Kronseder, Karin
    Ballhorn, Uwe
    Boehm, Viktor
    Siegert, Florian
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2012, 18 : 37 - 48
  • [10] Forest Total and Component Above-Ground Biomass (AGB) Estimation through C- and L-band Polarimetric SAR Data
    Zeng, Peng
    Zhang, Wangfei
    Li, Yun
    Shi, Jianmin
    Wang, Zhanhui
    FORESTS, 2022, 13 (03):