Bohr's Phenomenon for Some Univalent Harmonic Functions

被引:0
|
作者
Singla, Chinu [1 ]
Gupta, Sushma [1 ]
Singh, Sukhjit [1 ]
机构
[1] St Longowal Inst Engn & Technol, Dept Math, Longowal 148106, India
来源
KYUNGPOOK MATHEMATICAL JOURNAL | 2022年 / 62卷 / 02期
关键词
Bohr radius; harmonic univalent functions; convex in one direction;
D O I
10.5666/KMJ.2022.62.2.243
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In 1914, Bohr proved that there is an r(0) is an element of (0, 1) such that if a power series Sigma(infinity)(m=0) c(m) z(m) is convergent in the open unit disc and vertical bar Sigma(infinity)(m=0) c(m) z(m)vertical bar < 1 then, Sigma(infinity)(m=0) vertical bar c(m) z(m)vertical bar < for vertical bar z vertical bar < r(0). The largest value of such r(0) is called the Bohr radius. In this article, we find Bohr radius for some univalent harmonic mappings having different dilatations. We also compute the Bohr radius for functions that are convex in one direction.
引用
收藏
页码:243 / 256
页数:14
相关论文
共 50 条
  • [31] Some properties of a subclass of harmonic univalent functions defined by the multiplier transformations
    Saurabh Porwal
    Indian Journal of Pure and Applied Mathematics, 2015, 46 : 309 - 335
  • [32] Some Properties of a Subclass of Harmonic Univalent Functions Defined by Fractional Calculus
    Porwal, Saurabh
    THAI JOURNAL OF MATHEMATICS, 2015, 13 (01): : 87 - 107
  • [33] AN APPLICATION OF HYPERGEOMETRIC FUNCTIONS ON HARMONIC UNIVALENT FUNCTIONS
    Porwal, Saurabh
    Dixit, Kaushal Kishore
    BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 2 (04): : 97 - 105
  • [34] Bohr's phenomenon for analytic functions into the exterior of a compact convex body
    Abu Muhanna, Y.
    Ali, Rosihan M.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 379 (02) : 512 - 517
  • [35] Bohr radius for certain classes of starlike and convex univalent functions
    Allu, Vasudevarao
    Halder, Himadri
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 493 (01)
  • [36] Bohr-Rogosinski type inequalities for concave univalent functions
    Allu, Vasudevarao
    Arora, Vibhuti
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 520 (01)
  • [37] Multiplier family of harmonic univalent functions
    Al-Khal, R. A.
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 215 (06) : 2238 - 2242
  • [38] Certain multipliers of univalent harmonic functions
    Ahuja, OP
    Jahangiri, JM
    APPLIED MATHEMATICS LETTERS, 2005, 18 (12) : 1319 - 1324
  • [39] On a certain subclass of harmonic univalent functions
    Yunus, Yuzaimi
    Akbarally, Ajab Bai
    Halim, Suzeini Abdul
    14TH INTERNATIONAL SYMPOSIUM ON GEOMETRIC FUNCTION THEORY AND APPLICATIONS, 2019, 1212
  • [40] Partial sums of harmonic univalent functions
    Porwal, Saurabh
    Dixit, Kaushal Kishore
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2013, 58 (01): : 15 - 21