Bohr's Phenomenon for Some Univalent Harmonic Functions

被引:0
|
作者
Singla, Chinu [1 ]
Gupta, Sushma [1 ]
Singh, Sukhjit [1 ]
机构
[1] St Longowal Inst Engn & Technol, Dept Math, Longowal 148106, India
来源
KYUNGPOOK MATHEMATICAL JOURNAL | 2022年 / 62卷 / 02期
关键词
Bohr radius; harmonic univalent functions; convex in one direction;
D O I
10.5666/KMJ.2022.62.2.243
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In 1914, Bohr proved that there is an r(0) is an element of (0, 1) such that if a power series Sigma(infinity)(m=0) c(m) z(m) is convergent in the open unit disc and vertical bar Sigma(infinity)(m=0) c(m) z(m)vertical bar < 1 then, Sigma(infinity)(m=0) vertical bar c(m) z(m)vertical bar < for vertical bar z vertical bar < r(0). The largest value of such r(0) is called the Bohr radius. In this article, we find Bohr radius for some univalent harmonic mappings having different dilatations. We also compute the Bohr radius for functions that are convex in one direction.
引用
收藏
页码:243 / 256
页数:14
相关论文
共 50 条
  • [21] HARMONIC UNIVALENT-FUNCTIONS
    CLUNIE, J
    SHEILSMALL, T
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 1984, 9 (01): : 3 - 25
  • [22] On harmonic combination of univalent functions
    Obradovic, M.
    Ponnusamy, S.
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2012, 19 (03) : 461 - 472
  • [23] UNIVALENT HARMONIC-FUNCTIONS
    HENGARTNER, W
    SCHOBER, G
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 299 (01) : 1 - 31
  • [24] Harmonic univalent functions associated with Wright's generalized hypergeometric functions
    Raina, R. K.
    Sharma, P.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2011, 22 (08) : 561 - 572
  • [25] On a subclass of harmonic univalent functions
    Sharma, R. Bharavi
    Ravindar, B.
    PROCEEDINGS OF THE 10TH NATIONAL CONFERENCE ON MATHEMATICAL TECHNIQUES AND ITS APPLICATIONS (NCMTA 18), 2018, 1000
  • [26] Bohr phenomenon for certain subclass of harmonic mappings
    Meher, Akash
    Gochhayat, Priyabrat
    JOURNAL OF ANALYSIS, 2024, 32 (06): : 3421 - 3451
  • [27] BOHR PHENOMENON FOR CERTAIN CLASSES OF HARMONIC MAPPINGS
    Ahamed, Molla Basir
    Allu, Vasudevarao
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2022, 52 (04) : 1205 - 1225
  • [28] Bohr phenomenon for certain subclasses of harmonic mappings
    Allu, Vasudevarao
    Halder, Himadri
    BULLETIN DES SCIENCES MATHEMATIQUES, 2021, 173
  • [29] Certain subclasses of analytic univalent functions generated by harmonic univalent functions
    Joshi, Santosh
    Shelake, Girish
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2013, 58 (03): : 345 - 354
  • [30] SOME PROPERTIES OF A SUBCLASS OF HARMONIC UNIVALENT FUNCTIONS DEFINED BY THE MULTIPLIER TRANSFORMATIONS
    Porwal, Saurabh
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2015, 46 (03): : 309 - 335