Bohr's Phenomenon for Some Univalent Harmonic Functions

被引:0
|
作者
Singla, Chinu [1 ]
Gupta, Sushma [1 ]
Singh, Sukhjit [1 ]
机构
[1] St Longowal Inst Engn & Technol, Dept Math, Longowal 148106, India
来源
KYUNGPOOK MATHEMATICAL JOURNAL | 2022年 / 62卷 / 02期
关键词
Bohr radius; harmonic univalent functions; convex in one direction;
D O I
10.5666/KMJ.2022.62.2.243
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In 1914, Bohr proved that there is an r(0) is an element of (0, 1) such that if a power series Sigma(infinity)(m=0) c(m) z(m) is convergent in the open unit disc and vertical bar Sigma(infinity)(m=0) c(m) z(m)vertical bar < 1 then, Sigma(infinity)(m=0) vertical bar c(m) z(m)vertical bar < for vertical bar z vertical bar < r(0). The largest value of such r(0) is called the Bohr radius. In this article, we find Bohr radius for some univalent harmonic mappings having different dilatations. We also compute the Bohr radius for functions that are convex in one direction.
引用
收藏
页码:243 / 256
页数:14
相关论文
共 50 条
  • [41] Harmonic univalent functions with negative coefficients
    Silverman, H
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1998, 220 (01) : 283 - 289
  • [42] On a New Subclass of Harmonic Univalent Functions
    Bayram, H.
    Yalcin, S.
    MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2020, 14 (01): : 63 - 75
  • [43] ON A NEW CLASS OF HARMONIC UNIVALENT FUNCTIONS
    Atshan, Waggas Galib
    Wanas, Abbas Kareem
    MATEMATICKI VESNIK, 2013, 65 (04): : 555 - 564
  • [44] The Bohr phenomenon for analytic functions on shifted disks
    Ahamed, Molla Basir
    Allu, Vasudevarao
    Halder, Himadri
    ANNALES FENNICI MATHEMATICI, 2022, 47 (01): : 103 - 120
  • [45] Bohr phenomenon for operator-valued functions
    Bhowmik, Bappaditya
    Das, Nilanjan
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2021, 64 (01) : 72 - 86
  • [46] Inequalities of harmonic univalent functions with connections of hypergeometric functions
    Sokol, Janusz
    Ibrahim, Rabha W.
    Ahmad, M. Z.
    Al-Janaby, Hiba F.
    OPEN MATHEMATICS, 2015, 13 : 691 - 705
  • [47] HARMONIC UNIVALENT FUNCTIONS ASSOCIATED WITH GENERALIZED HYPERGEOMETRIC FUNCTIONS
    Murugusundaramoorthy, Gangadharan.
    Uma, Kalieppan.
    BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 2 (02): : 69 - 76
  • [49] Refined Bohr inequalities for certain classes of functions: analytic, univalent, and convex
    Ahammed, Sabir
    Ahamed, Molla Basir
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2024, 67 (01): : 9 - 25
  • [50] INTEGRAL MEANS OF HARMONIC UNIVALENT-FUNCTIONS
    TAHA, TS
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 1994, 19 (2A): : 203 - 208