Multiplier family of harmonic univalent functions

被引:0
|
作者
Al-Khal, R. A. [1 ]
机构
[1] Girls Coll, Fac Sci, Dept Math, Dammam, Saudi Arabia
关键词
Harmonic functions; Generalized Bernardi-Libera-Livingston; integral operator; Distortion theorems; Closure properties; Convolution; Neighborhoods;
D O I
10.1016/j.amc.2009.08.022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to study a multiplier family of harmonic univalent functions using the sequences {c(n)} and {d(n)} of positive real numbers. By specializing {c(n)} and {d(n)}, the generalized Bernardi-Libera-Livingston integral operator is modified for such functions and the closure of the multiplier family under the modified integral operator is determined. Also, convolution products, closure properties, distortion theorems, convex combinations and neighborhoods for such functions are given. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:2238 / 2242
页数:5
相关论文
共 50 条
  • [1] A CLASS OF UNIVALENT HARMONIC FUNCTIONS DEFINED BY MULTIPLIER TRANSFORMATION
    Kumar, Raj
    Gupta, Sushma
    Singh, Sukhjit
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2012, 57 (04): : 371 - 382
  • [2] A Generalized Class of Univalent Harmonic Functions Associated with a Multiplier Transformation
    Khurana, Deepali
    Kumar, Raj
    Verma, Sarika
    Murugusundaramoorthy, Gangadharan
    SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS, 2021, 18 (03): : 27 - 39
  • [3] Some Results for a Family of Harmonic Univalent Functions
    Liangpeng XIONG
    Yaqian WANG
    JournalofMathematicalResearchwithApplications, 2022, 42 (05) : 499 - 510
  • [4] SOME PROPERTIES OF A SUBCLASS OF HARMONIC UNIVALENT FUNCTIONS DEFINED BY THE MULTIPLIER TRANSFORMATIONS
    Porwal, Saurabh
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2015, 46 (03): : 309 - 335
  • [5] Some properties of a subclass of harmonic univalent functions defined by the multiplier transformations
    Saurabh Porwal
    Indian Journal of Pure and Applied Mathematics, 2015, 46 : 309 - 335
  • [6] SUBORDINATIONS BY CERTAIN UNIVALENT FUNCTIONS ASSOCIATED WITH A FAMILY OF MULTIPLIER TRANSFORMATIONS
    An, Seon Hye
    Cho, Nak Eun
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2024, 14 (02): : 778 - 791
  • [7] ON A MULTIPLIER CONJECTURE FOR UNIVALENT-FUNCTIONS
    GRUENBERG, V
    RONNING, F
    RUSCHEWEYH, S
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 322 (01) : 377 - 393
  • [8] HARMONIC UNIVALENT-FUNCTIONS
    CLUNIE, J
    SHEILSMALL, T
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 1984, 9 (01): : 3 - 25
  • [9] On harmonic combination of univalent functions
    Obradovic, M.
    Ponnusamy, S.
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2012, 19 (03) : 461 - 472
  • [10] UNIVALENT HARMONIC-FUNCTIONS
    HENGARTNER, W
    SCHOBER, G
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 299 (01) : 1 - 31