Multiplier family of harmonic univalent functions

被引:0
|
作者
Al-Khal, R. A. [1 ]
机构
[1] Girls Coll, Fac Sci, Dept Math, Dammam, Saudi Arabia
关键词
Harmonic functions; Generalized Bernardi-Libera-Livingston; integral operator; Distortion theorems; Closure properties; Convolution; Neighborhoods;
D O I
10.1016/j.amc.2009.08.022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to study a multiplier family of harmonic univalent functions using the sequences {c(n)} and {d(n)} of positive real numbers. By specializing {c(n)} and {d(n)}, the generalized Bernardi-Libera-Livingston integral operator is modified for such functions and the closure of the multiplier family under the modified integral operator is determined. Also, convolution products, closure properties, distortion theorems, convex combinations and neighborhoods for such functions are given. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:2238 / 2242
页数:5
相关论文
共 50 条
  • [21] On a New Subclass of Harmonic Univalent Functions
    Bayram, H.
    Yalcin, S.
    MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2020, 14 (01): : 63 - 75
  • [22] ON A NEW CLASS OF HARMONIC UNIVALENT FUNCTIONS
    Atshan, Waggas Galib
    Wanas, Abbas Kareem
    MATEMATICKI VESNIK, 2013, 65 (04): : 555 - 564
  • [23] On a multiplier operator induced by the Schwarzian derivative of univalent functions
    Jin, Jianjun
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2024, 56 (07) : 2296 - 2314
  • [24] Inequalities of harmonic univalent functions with connections of hypergeometric functions
    Sokol, Janusz
    Ibrahim, Rabha W.
    Ahmad, M. Z.
    Al-Janaby, Hiba F.
    OPEN MATHEMATICS, 2015, 13 : 691 - 705
  • [25] HARMONIC UNIVALENT FUNCTIONS ASSOCIATED WITH GENERALIZED HYPERGEOMETRIC FUNCTIONS
    Murugusundaramoorthy, Gangadharan.
    Uma, Kalieppan.
    BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 2 (02): : 69 - 76
  • [26] INTEGRAL MEANS OF HARMONIC UNIVALENT-FUNCTIONS
    TAHA, TS
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 1994, 19 (2A): : 203 - 208
  • [27] Disk of convexity of sections of univalent harmonic functions
    Li, Liulan
    Ponnusamy, Saminathan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 408 (02) : 589 - 596
  • [28] Partial sums of certain harmonic univalent functions
    Porwal S.
    Lobachevskii Journal of Mathematics, 2011, 32 (4) : 366 - 375
  • [29] A SUBCLASS OF HARMONIC UNIVALENT FUNCTIONS WITH POSITIVE COEFFICIENTS
    Dixit, K. K.
    Porwal, Saurabh
    TAMKANG JOURNAL OF MATHEMATICS, 2010, 41 (03): : 261 - 269
  • [30] On T-neighbourhoods of Harmonic Univalent Functions
    Azizi, Saman
    Ebadian, Ali
    Yalcin, Sibel
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2019, 43 (A5): : 2269 - 2273