Nonlinear drift-diffusion model of gating in the fast Cl channel

被引:7
|
作者
Vaccaro, S. R. [1 ]
机构
[1] Univ Adelaide, Dept Phys, Adelaide, SA 5005, Australia
来源
PHYSICAL REVIEW E | 2007年 / 76卷 / 01期
关键词
D O I
10.1103/PhysRevE.76.011923
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The dynamics of the open or closed state region of an ion channel may be described by a probability density p(x,t) which satisfies a Fokker-Planck equation. The closed state dwell-time distribution f(c)(t) derived from the Fokker-Planck equation with a nonlinear diffusion coefficient D(x)proportional to exp(-gamma x), gamma>0 and a linear ramp potential U-c(x), is in good agreement with experimental data and it may be shown analytically that if gamma is sufficiently large, f(c)(t)proportional to t(-2-nu) for intermediate times, where nu=U-c(')/gamma approximate to-0.3 for a fast Cl channel. The solution of a master equation which approximates the Fokker-Planck equation exhibits an oscillation superimposed on the power law trend and can account for an empirical rate-amplitude correlation that applies to several ion channels.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] AN AUGMENTED DRIFT-DIFFUSION MODEL IN A SEMICONDUCTOR-DEVICE
    FRIEDMAN, A
    LIU, WX
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1992, 168 (02) : 401 - 412
  • [42] ANALYSIS OF A DRIFT-DIFFUSION MODEL FOR PEROVSKITE SOLAR CELLS
    Abdel, Dilara
    Glitzky, Annegret
    Liero, Matthias
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2025, 30 (01): : 99 - 131
  • [43] Approximate solutions to the quantum drift-diffusion model of semiconductors
    Romano, V.
    Torrisi, M.
    Tracina, R.
    JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (02)
  • [44] The relaxation of the hydrodynamic model for semiconductors to the drift-diffusion equations
    Hsiao, L
    Zhang, KJ
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2000, 165 (02) : 315 - 354
  • [45] IGCT Circuit Model Based on Drift-diffusion Model Equations
    Zhou Y.
    Kong L.
    Wang J.
    Gaodianya Jishu/High Voltage Engineering, 2021, 47 (01): : 118 - 128
  • [46] Stability of solitary waves in a semiconductor drift-diffusion model
    Cuesta, C. M.
    Schmeiser, C.
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2008, 68 (05) : 1423 - 1438
  • [47] Empirical Ballistic Mobility Model for Drift-Diffusion Simulation
    Erlebach, A.
    Lee, K. H.
    Bufler, F. M.
    2016 46TH EUROPEAN SOLID-STATE DEVICE RESEARCH CONFERENCE (ESSDERC), 2016, : 420 - 423
  • [48] Numerical simulation of a multilane drift-diffusion traffic model
    Cho, HJ
    Shih, HH
    Hwang, NC
    2003 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS, VOLS 1-5, CONFERENCE PROCEEDINGS, 2003, : 90 - 95
  • [49] The bipolar hydrodynamic model for semiconductors and the drift-diffusion equations
    Natalini, R
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1996, 198 (01) : 262 - 281
  • [50] Group analysis of the drift-diffusion model for quantum semiconductors
    Ibragimov, N. H.
    Khamitova, R.
    Avdonina, E. D.
    Galiakberova, L. R.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2015, 20 (01) : 74 - 78