Stability of solitary waves in a semiconductor drift-diffusion model

被引:2
|
作者
Cuesta, C. M. [1 ]
Schmeiser, C. [2 ,3 ]
机构
[1] Univ Nottingham, Sch Math Sci, Div Theoret Mech, Nottingham NG7 2RD, England
[2] Univ Vienna, Fac Math, A-1090 Vienna, Austria
[3] Johann Radon Inst Computat & Appl Math, A-4040 Linz, Austria
基金
英国工程与自然科学研究理事会;
关键词
Gunn effect; drift-diffusion equation; solitary waves; global constraint;
D O I
10.1137/070690766
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a macroscopic (drift-diffusion) model describing a simple microwave generator, consisting of a special type of semiconductor material that, when biased above a certain threshold voltage, generates charge waves. These waves correspond to travelling wave solutions of the model equation which, however, turn out to be unstable in a standard formulation of the travelling wave problem. Here a different formulation of this problem is considered, where an external voltage condition is applied in the form of an integral constraint. Global existence of this novel Cauchy problem is proven and the results of numerical experiments are presented, which suggest the stability of solitary waves. In addition, a small amplitude limit is considered, for which linearized orbital stability of solitary waves can be proven.
引用
收藏
页码:1423 / 1438
页数:16
相关论文
共 50 条
  • [2] The Stability Criterion of a Semiconductor Superlattice in the Drift-Diffusion Approximation
    Zhukovskii, V. Ch
    Prudskikh, N. S.
    Golovatyuk, S. E.
    Krevchik, V. D.
    Semenov, M. B.
    Shorokhov, A. V.
    MOSCOW UNIVERSITY PHYSICS BULLETIN, 2018, 73 (04) : 398 - 400
  • [3] AN AUGMENTED DRIFT-DIFFUSION MODEL IN A SEMICONDUCTOR-DEVICE
    FRIEDMAN, A
    LIU, WX
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1992, 168 (02) : 401 - 412
  • [4] Additive decomposition applied to the semiconductor drift-diffusion model
    Brauer, Elizabeth J.
    Turowski, Marek
    McDonough, James M.
    VLSI Design, 1998, 8 (1-4): : 393 - 399
  • [5] ON THE UNIQUENESS OF THE SOLUTION TO THE DRIFT-DIFFUSION MODEL IN SEMICONDUCTOR ANALYSIS
    NACHAOUI, A
    NASSIF, NR
    COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 1992, 11 (03) : 377 - 390
  • [6] Analysis of a drift-diffusion model for organic semiconductor devices
    Duy-Hai Doan
    Glitzky, Annegret
    Liero, Matthias
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2019, 70 (02):
  • [7] Nonequilibrium drift-diffusion model for organic semiconductor devices
    Felekidis, Nikolaos
    Melianas, Armantas
    Kemerink, Martijn
    PHYSICAL REVIEW B, 2016, 94 (03)
  • [8] Challenges in Drift-Diffusion Semiconductor Simulations
    Farrell, Patricio
    Peschka, Dirk
    FINITE VOLUMES FOR COMPLEX APPLICATIONS IX-METHODS, THEORETICAL ASPECTS, EXAMPLES, FVCA 9, 2020, 323 : 615 - 623
  • [9] On a Drift-Diffusion System for Semiconductor Devices
    Granero-Belinchon, Rafael
    ANNALES HENRI POINCARE, 2016, 17 (12): : 3473 - 3498
  • [10] ON THE UNIQUENESS OF SOLUTIONS TO THE DRIFT-DIFFUSION MODEL OF SEMICONDUCTOR-DEVICES
    GAJEWSKI, H
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 1994, 4 (01): : 121 - 133