ON THE UNIQUENESS OF THE SOLUTION TO THE DRIFT-DIFFUSION MODEL IN SEMICONDUCTOR ANALYSIS

被引:1
|
作者
NACHAOUI, A
NASSIF, NR
机构
[1] UNIV NANTES,INST MATH & INFORMAT,F-44035 NANTES,FRANCE
[2] AMER UNIV BEIRUT,DEPT MATH,BEIRUT,LEBANON
[3] UNIV REIMS,DEPT MATH,F-51100 REIMS,FRANCE
[4] UNIV RENNES 1,INST RECH MATH AVANCEE,F-35010 RENNES,FRANCE
关键词
D O I
10.1108/eb010099
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper is concerned with the analysis of global uniqueness of the solution to the drift-diffusion models, [9], for stationary flow of charges carriers in semiconductor devices. Two uniqueness cases ate found. Firstly, small applied voltages with a proof introducing new 'quasi-monotony condition' verified for solutions in W1,4-delta and not necessarily in H-2. Secondly, large applied voltage to the semiconductor with small 2D domain, and not large doping functions. These uniqueness cases allow the construction of algorithms that yield converging sequences of solutions.
引用
收藏
页码:377 / 390
页数:14
相关论文
共 50 条