ON THE UNIQUENESS OF THE SOLUTION TO THE DRIFT-DIFFUSION MODEL IN SEMICONDUCTOR ANALYSIS

被引:1
|
作者
NACHAOUI, A
NASSIF, NR
机构
[1] UNIV NANTES,INST MATH & INFORMAT,F-44035 NANTES,FRANCE
[2] AMER UNIV BEIRUT,DEPT MATH,BEIRUT,LEBANON
[3] UNIV REIMS,DEPT MATH,F-51100 REIMS,FRANCE
[4] UNIV RENNES 1,INST RECH MATH AVANCEE,F-35010 RENNES,FRANCE
关键词
D O I
10.1108/eb010099
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper is concerned with the analysis of global uniqueness of the solution to the drift-diffusion models, [9], for stationary flow of charges carriers in semiconductor devices. Two uniqueness cases ate found. Firstly, small applied voltages with a proof introducing new 'quasi-monotony condition' verified for solutions in W1,4-delta and not necessarily in H-2. Secondly, large applied voltage to the semiconductor with small 2D domain, and not large doping functions. These uniqueness cases allow the construction of algorithms that yield converging sequences of solutions.
引用
收藏
页码:377 / 390
页数:14
相关论文
共 50 条
  • [41] A THEORETICALLY ACCURATE MOBILITY MODEL FOR SEMICONDUCTOR-DEVICE DRIFT-DIFFUSION SIMULATION
    VELMRE, E
    UDAL, A
    KOCSIS, T
    MASSZI, F
    PHYSICA SCRIPTA, 1994, 54 : 263 - 267
  • [42] Multilevel solution of augmented drift-diffusion equations
    Davis, MB
    Carey, GF
    COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 1996, 15 (02) : 4 - +
  • [43] Quantum kinetic and drift-diffusion equations for semiconductor superlattices
    Bonilla, LL
    Escobedo, R
    PROGRESS IN INDUSTRIAL MATHEMATICS AT ECMI 2004, 2006, 8 : 109 - 113
  • [44] Wigner-Poisson and nonlocal drift-diffusion model equations for semiconductor superlattices
    Bonilla, LL
    Escobedo, R
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2005, 15 (08): : 1253 - 1272
  • [45] On the stationary quantum drift-diffusion model
    N. Ben Abdallah
    A. Unterreiter
    Zeitschrift für angewandte Mathematik und Physik ZAMP, 1998, 49 : 251 - 275
  • [46] A numerical method for a transient quantum drift-diffusion model arising in semiconductor devices
    Tomoko Shimada
    Shinji Odanaka
    Journal of Computational Electronics, 2008, 7 : 485 - 493
  • [47] A numerical method for a transient quantum drift-diffusion model arising in semiconductor devices
    Shimada, Tomoko
    Odanaka, Shinji
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2008, 7 (04) : 485 - 493
  • [48] The bipolar quantum drift-diffusion model
    Xiu Qing Chen
    Li Chen
    Acta Mathematica Sinica, English Series, 2009, 25
  • [49] Quantum corrections in the drift-diffusion model
    Hosseini, Seyed Ebrahim
    Faez, Rahim
    Yazdi, Hadi Sadoghi
    Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, 2007, 46 (11): : 7247 - 7250
  • [50] On the stationary quantum drift-diffusion model
    Ben Abdallah, N
    Unterreiter, A
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1998, 49 (02): : 251 - 275