Nonlinear drift-diffusion model of gating in the fast Cl channel

被引:7
|
作者
Vaccaro, S. R. [1 ]
机构
[1] Univ Adelaide, Dept Phys, Adelaide, SA 5005, Australia
来源
PHYSICAL REVIEW E | 2007年 / 76卷 / 01期
关键词
D O I
10.1103/PhysRevE.76.011923
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The dynamics of the open or closed state region of an ion channel may be described by a probability density p(x,t) which satisfies a Fokker-Planck equation. The closed state dwell-time distribution f(c)(t) derived from the Fokker-Planck equation with a nonlinear diffusion coefficient D(x)proportional to exp(-gamma x), gamma>0 and a linear ramp potential U-c(x), is in good agreement with experimental data and it may be shown analytically that if gamma is sufficiently large, f(c)(t)proportional to t(-2-nu) for intermediate times, where nu=U-c(')/gamma approximate to-0.3 for a fast Cl channel. The solution of a master equation which approximates the Fokker-Planck equation exhibits an oscillation superimposed on the power law trend and can account for an empirical rate-amplitude correlation that applies to several ion channels.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Generalized drift-diffusion model for miniband superlattices
    Bonilla, LL
    Escobedo, R
    Perales, A
    PHYSICAL REVIEW B, 2003, 68 (24)
  • [22] Quantum drift-diffusion model for IMPATT devices
    Aritra Acharyya
    Subhashri Chatterjee
    Jayabrata Goswami
    Suranjana Banerjee
    J. P. Banerjee
    Journal of Computational Electronics, 2014, 13 : 739 - 752
  • [23] Quantum drift-diffusion model for IMPATT devices
    Acharyya, Aritra
    Chatterjee, Subhashri
    Goswami, Jayabrata
    Banerjee, Suranjana
    Banerjee, J. P.
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2014, 13 (03) : 739 - 752
  • [24] The semiclassical limit in the quantum drift-diffusion model
    Qiang Chang Ju
    Acta Mathematica Sinica, English Series, 2009, 25 : 253 - 264
  • [25] The Dirichlet problem of the quantum drift-diffusion model
    Chen, Xiuqing
    Chen, Li
    Jian, Huaiyu
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 69 (09) : 3084 - 3092
  • [26] The Multidimensional Bipolar Quantum Drift-diffusion Model
    Chen, Xiuqing
    Guo, Yingchun
    ADVANCED NONLINEAR STUDIES, 2008, 8 (04) : 799 - 816
  • [27] The semiclassical limit in the quantum drift-diffusion model
    Ju, Qiang Chang
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2009, 25 (02) : 253 - 264
  • [28] Improvement on drift-diffusion model for photovoltaic detectors
    Department of Physics and Mathematics, Qingdao University of Science and Technology, Qingdao 266042, China
    不详
    Bandaoti Guangdian, 2006, 4 (399-401):
  • [29] The Semiclassical Limit in the Quantum Drift-Diffusion Model
    Qiang Chang JUInstitute of Applied Physics and Computational Mathematics
    ActaMathematicaSinica(EnglishSeries), 2009, 25 (02) : 253 - 264
  • [30] Numerical approximation of a quantum drift-diffusion model
    Gallego, S
    Méhats, F
    COMPTES RENDUS MATHEMATIQUE, 2004, 339 (07) : 519 - 524