Nonlinear drift-diffusion model of gating in the fast Cl channel

被引:7
|
作者
Vaccaro, S. R. [1 ]
机构
[1] Univ Adelaide, Dept Phys, Adelaide, SA 5005, Australia
来源
PHYSICAL REVIEW E | 2007年 / 76卷 / 01期
关键词
D O I
10.1103/PhysRevE.76.011923
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The dynamics of the open or closed state region of an ion channel may be described by a probability density p(x,t) which satisfies a Fokker-Planck equation. The closed state dwell-time distribution f(c)(t) derived from the Fokker-Planck equation with a nonlinear diffusion coefficient D(x)proportional to exp(-gamma x), gamma>0 and a linear ramp potential U-c(x), is in good agreement with experimental data and it may be shown analytically that if gamma is sufficiently large, f(c)(t)proportional to t(-2-nu) for intermediate times, where nu=U-c(')/gamma approximate to-0.3 for a fast Cl channel. The solution of a master equation which approximates the Fokker-Planck equation exhibits an oscillation superimposed on the power law trend and can account for an empirical rate-amplitude correlation that applies to several ion channels.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] A drift-diffusion model for semiconductors with temperature effects
    Xu, Xiangsheng
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2009, 139 : 1101 - 1119
  • [32] A drift-diffusion model for robotic obstacle avoidance
    Reverdy, Paul
    Ilhan, B. Deniz
    Koditschek, Daniel E.
    2015 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2015, : 6113 - 6120
  • [33] Voltage-current characteristics of a pn-diode from a drift-diffusion model with nonlinear diffusion
    Jungel, A
    Schmeiser, C
    QUARTERLY OF APPLIED MATHEMATICS, 1997, 55 (04) : 707 - 721
  • [34] Asymptotic behavior of a solution to the drift-diffusion equation for a fast-diffusion case
    Ogawa, Takayoshi
    Suguro, Takeshi
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 307 : 114 - 136
  • [35] SEMICLASSICAL LIMIT FOR BIPOLAR QUANTUM DRIFT-DIFFUSION MODEL
    琚强昌
    陈丽
    ActaMathematicaScientia, 2009, 29 (02) : 285 - 293
  • [36] An adaptive drift-diffusion model of interval timing dynamics
    Luzardo, Andre
    Ludvig, Elliot A.
    Rivest, Francois
    BEHAVIOURAL PROCESSES, 2013, 95 : 90 - 99
  • [37] Neural Substrates of the Drift-Diffusion Model in Brain Disorders
    Gupta, Ankur
    Bansal, Rohini
    Alashwal, Hany
    Kacar, Anil Safak
    Balci, Fuat
    Moustafa, Ahmed A.
    FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2022, 15
  • [38] Neural Substrates of the Drift-Diffusion Model in Brain Disorders
    Gupta, Ankur
    Bansal, Rohini
    Alashwal, Hany
    Kacar, Anil Safak
    Balci, Fuat
    Moustafa, Ahmed A.
    Frontiers in Computational Neuroscience, 2022, 15
  • [39] A drift-diffusion model of interval timing in the peak procedure
    Luzardo, Andre
    Rivest, Francois
    Alonso, Eduardo
    Ludvig, Elliot A.
    JOURNAL OF MATHEMATICAL PSYCHOLOGY, 2017, 77 : 111 - 123
  • [40] DRIFT-DIFFUSION MODEL FOR ABSORPTION AND RESORPTION CURRENTS IN POLYMERS
    DELVALLE, CA
    RUIZ, MS
    LOPEZ, GM
    JOURNAL OF APPLIED PHYSICS, 1987, 61 (09) : 4571 - 4578