Mutual consistency learning for semi-supervised medical image segmentation

被引:147
|
作者
Wu, Yicheng [1 ]
Ge, Zongyuan [2 ,3 ]
Zhang, Donghao [3 ]
Xu, Minfeng [4 ]
Zhang, Lei [4 ]
Xia, Yong [5 ]
Cai, Jianfei [1 ]
机构
[1] Monash Univ, Fac Informat Technol, Dept Data Sci & AI, Melbourne, Vic 3800, Australia
[2] Monash Univ, Monash Airdoc Res, Melbourne, Vic 3800, Australia
[3] Monash eRes Ctr, Monash Med AI, Melbourne, Vic 3800, Australia
[4] Alibaba Grp, DAMO Acad, Hangzhou 311121, Peoples R China
[5] Northwestern Polytech Univ, Natl Engn Lab Integrated AeroSp Ground Ocean Big, Sch Comp Sci & Engn, Xian 710072, Peoples R China
基金
中国国家自然科学基金;
关键词
Mutual consistency; Soft pseudo label; Semi-supervised learning; Medical image segmentation;
D O I
10.1016/j.media.2022.102530
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a novel mutual consistency network (MC-Net+) to effectively exploit the un-labeled data for semi-supervised medical image segmentation. The MC-Net+ model is motivated by the observation that deep models trained with limited annotations are prone to output highly uncertain and easily mis-classified predictions in the ambiguous regions (e.g., adhesive edges or thin branches) for med-ical image segmentation. Leveraging these challenging samples can make the semi-supervised segmenta-tion model training more effective. Therefore, our proposed MC-Net+ model consists of two new designs. First, the model contains one shared encoder and multiple slightly different decoders (i.e., using different up-sampling strategies). The statistical discrepancy of multiple decoders' outputs is computed to denote the model's uncertainty, which indicates the unlabeled hard regions. Second, we apply a novel mutual consistency constraint between one decoder's probability output and other decoders' soft pseudo labels. In this way, we minimize the discrepancy of multiple outputs (i.e., the model uncertainty) during training and force the model to generate invariant results in such challenging regions, aiming at regularizing the model training. We compared the segmentation results of our MC-Net+ model with five state-of-the-art semi-supervised approaches on three public medical datasets. Extension experiments with two standard semi-supervised settings demonstrate the superior performance of our model over other methods, which sets a new state of the art for semi-supervised medical image segmentation. Our code is released publicly at https://github.com/ycwu1997/MC-Net.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Cross Task Temporal Consistency for Semi-supervised Medical Image Segmentation
    Jeevan, Govind
    Pawan, S. J.
    Rajan, Jeny
    MACHINE LEARNING IN MEDICAL IMAGING, MLMI 2022, 2022, 13583 : 140 - 150
  • [22] A Novel Perturbation Consistency Framework in Semi-Supervised Medical Image Segmentation
    Ma, Xiaoxuan
    Lian, Kuncheng
    Sui, Dong
    APPLIED SCIENCES-BASEL, 2024, 14 (18):
  • [23] MCF: Mutual Correction Framework for Semi-Supervised Medical Image Segmentation
    Wang, Yongchao
    Xiao, Bin
    Bi, Xiuli
    Li, Weisheng
    Gao, Xinbo
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 15651 - 15660
  • [24] Consistency-Guided Meta-learning for Bootstrapping Semi-supervised Medical Image Segmentation
    Wei, Qingyue
    Yu, Lequan
    Li, Xianhang
    Shao, Wei
    Xie, Cihang
    Xing, Lei
    Zhou, Yuyin
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2023, PT IV, 2023, 14223 : 183 - 193
  • [25] Dynamic graph consistency and self-contrast learning for semi-supervised medical image segmentation
    Li, Gang
    Xie, Jinjie
    Zhang, Ling
    Cheng, Guijuan
    Zhang, Kairu
    Bai, Mingqi
    NEURAL NETWORKS, 2025, 184
  • [26] CROSS-LEVEL CONTRASTIVE LEARNING AND CONSISTENCY CONSTRAINT FOR SEMI-SUPERVISED MEDICAL IMAGE SEGMENTATION
    Zhao, Xinkai
    Fang, Chaowei
    Fan, De-Jun
    Lin, Xutao
    Gao, Feng
    Li, Guanbin
    2022 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (IEEE ISBI 2022), 2022,
  • [27] MVPCL: multi-view prototype consistency learning for semi-supervised medical image segmentation
    Li, Xiafan
    Quan, Hongyan
    VISUAL COMPUTER, 2025, 41 (03): : 1841 - 1854
  • [28] Semi-Supervised Medical Image Segmentation Using Adversarial Consistency Learning and Dynamic Convolution Network
    Lei, Tao
    Zhang, Dong
    Du, Xiaogang
    Wang, Xuan
    Wan, Yong
    Nandi, Asoke K.
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2023, 42 (05) : 1265 - 1277
  • [29] UPCoL: Uncertainty-Informed Prototype Consistency Learning for Semi-supervised Medical Image Segmentation
    Lu, Wenjing
    Lei, Jiahao
    Qiu, Peng
    Sheng, Rui
    Zhou, Jinhua
    Lu, Xinwu
    Yang, Yang
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2023, PT IV, 2023, 14223 : 662 - 672
  • [30] Deep semi-supervised learning for medical image segmentation: A review
    Han, Kai
    Sheng, Victor S.
    Song, Yuqing
    Liu, Yi
    Qiu, Chengjian
    Ma, Siqi
    Liu, Zhe
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 245