Dynamic graph consistency and self-contrast learning for semi-supervised medical image segmentation

被引:0
|
作者
Li, Gang [1 ]
Xie, Jinjie [1 ]
Zhang, Ling [1 ]
Cheng, Guijuan [1 ]
Zhang, Kairu [1 ]
Bai, Mingqi [1 ]
机构
[1] Taiyuan Univ Technol, Coll Software, Taiyuan, Peoples R China
关键词
Semi-supervised learning; Dynamic graph consistency; Self-contrast learning; Medical image segmentation;
D O I
10.1016/j.neunet.2024.107063
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Semi-supervised medical image segmentation endeavors to exploit a limited set of labeled data in conjunction with a substantial corpus of unlabeled data, with the aim of training models that can match or even exceed the efficacy of fully supervised segmentation models. Despite the potential of this approach, most existing semisupervised medical image segmentation techniques that employ consistency regularization predominantly focus on spatial consistency at the image level, often neglecting the crucial role of feature-level channel information. To address this limitation, we propose an innovative method that integrates graph convolutional networks with a consistency regularization framework to develop a dynamic graph consistency approach. This method imposes channel-level constraints across different decoders by leveraging high-level features within the network. Furthermore, we introduce a novel self-contrast learning strategy, which performs image-level comparison within the same batch and engages in pixel-level contrast learning based on pixel positions. This approach effectively overcomes traditional contrast learning challenges related to identifying positive and negative samples, reduces computational resource consumption, and significantly improves model performance. Our experimental evaluation on three distinct medical image segmentation datasets indicates that the proposed method demonstrates superior performance across a variety of test scenarios.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Consistency and adversarial semi-supervised learning for medical image segmentation
    Tang, Yongqiang
    Wang, Shilei
    Qu, Yuxun
    Cui, Zhihua
    Zhang, Wensheng
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 161
  • [2] Mutual consistency learning for semi-supervised medical image segmentation
    Wu, Yicheng
    Ge, Zongyuan
    Zhang, Donghao
    Xu, Minfeng
    Zhang, Lei
    Xia, Yong
    Cai, Jianfei
    Medical Image Analysis, 2022, 81
  • [3] Mutual consistency learning for semi-supervised medical image segmentation
    Wu, Yicheng
    Ge, Zongyuan
    Zhang, Donghao
    Xu, Minfeng
    Zhang, Lei
    Xia, Yong
    Cai, Jianfei
    MEDICAL IMAGE ANALYSIS, 2022, 81
  • [4] Multidimensional perturbed consistency learning for semi-supervised medical image segmentation
    Yuan, Enze
    Zhao, Bin
    Qin, Xiao
    Ding, Shuxue
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2024, 34 (03)
  • [5] Decoupled Consistency for Semi-supervised Medical Image Segmentation
    Chen, Faquan
    Fei, Jingjing
    Chen, Yaqi
    Huang, Chenxi
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2023, PT I, 2023, 14220 : 551 - 561
  • [6] Semi-Supervised Medical Image Segmentation Using Adversarial Consistency Learning and Dynamic Convolution Network
    Lei, Tao
    Zhang, Dong
    Du, Xiaogang
    Wang, Xuan
    Wan, Yong
    Nandi, Asoke K.
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2023, 42 (05) : 1265 - 1277
  • [7] Uncertainty-aware consistency learning for semi-supervised medical image segmentation
    Dong, Min
    Yang, Ating
    Wang, Zhenhang
    Li, Dezhen
    Yang, Jing
    Zhao, Rongchang
    KNOWLEDGE-BASED SYSTEMS, 2025, 309
  • [8] Semi-supervised Medical Image Segmentation via Learning Consistency Under Transformations
    Bortsova, Gerda
    Dubost, Florian
    Hogeweg, Laurens
    Katramados, Ioannis
    de Bruijne, Marleen
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT VI, 2019, 11769 : 810 - 818
  • [9] Consistency learning with dynamic weighting and class-agnostic regularization for semi-supervised medical image segmentation
    Su, Jiawei
    Luo, Zhiming
    Lian, Sheng
    Lin, Dazhen
    Li, Shaozi
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 90
  • [10] Pair Shuffle Consistency for Semi-supervised Medical Image Segmentation
    He, Jianjun
    Cai, Chenyu
    Li, Qiong
    Ma, Andy J.
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2024, PT VIII, 2024, 15008 : 489 - 499