Mutual consistency learning for semi-supervised medical image segmentation

被引:147
|
作者
Wu, Yicheng [1 ]
Ge, Zongyuan [2 ,3 ]
Zhang, Donghao [3 ]
Xu, Minfeng [4 ]
Zhang, Lei [4 ]
Xia, Yong [5 ]
Cai, Jianfei [1 ]
机构
[1] Monash Univ, Fac Informat Technol, Dept Data Sci & AI, Melbourne, Vic 3800, Australia
[2] Monash Univ, Monash Airdoc Res, Melbourne, Vic 3800, Australia
[3] Monash eRes Ctr, Monash Med AI, Melbourne, Vic 3800, Australia
[4] Alibaba Grp, DAMO Acad, Hangzhou 311121, Peoples R China
[5] Northwestern Polytech Univ, Natl Engn Lab Integrated AeroSp Ground Ocean Big, Sch Comp Sci & Engn, Xian 710072, Peoples R China
基金
中国国家自然科学基金;
关键词
Mutual consistency; Soft pseudo label; Semi-supervised learning; Medical image segmentation;
D O I
10.1016/j.media.2022.102530
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a novel mutual consistency network (MC-Net+) to effectively exploit the un-labeled data for semi-supervised medical image segmentation. The MC-Net+ model is motivated by the observation that deep models trained with limited annotations are prone to output highly uncertain and easily mis-classified predictions in the ambiguous regions (e.g., adhesive edges or thin branches) for med-ical image segmentation. Leveraging these challenging samples can make the semi-supervised segmenta-tion model training more effective. Therefore, our proposed MC-Net+ model consists of two new designs. First, the model contains one shared encoder and multiple slightly different decoders (i.e., using different up-sampling strategies). The statistical discrepancy of multiple decoders' outputs is computed to denote the model's uncertainty, which indicates the unlabeled hard regions. Second, we apply a novel mutual consistency constraint between one decoder's probability output and other decoders' soft pseudo labels. In this way, we minimize the discrepancy of multiple outputs (i.e., the model uncertainty) during training and force the model to generate invariant results in such challenging regions, aiming at regularizing the model training. We compared the segmentation results of our MC-Net+ model with five state-of-the-art semi-supervised approaches on three public medical datasets. Extension experiments with two standard semi-supervised settings demonstrate the superior performance of our model over other methods, which sets a new state of the art for semi-supervised medical image segmentation. Our code is released publicly at https://github.com/ycwu1997/MC-Net.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Semi-Supervised Learning With Fact-Forcing for Medical Image Segmentation
    Bui, Phuoc-Nguyen
    Le, Duc-Tai
    Bum, Junghyun
    Kim, Seongho
    Song, Su Jeong
    Choo, Hyunseung
    IEEE ACCESS, 2023, 11 : 99413 - 99425
  • [42] Exploring Feature Representation Learning for Semi-Supervised Medical Image Segmentation
    Wu, Huimin
    Li, Xiaomeng
    Cheng, Kwang-Ting
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (11) : 16589 - 16601
  • [43] Exploring Feature Representation Learning for Semi-Supervised Medical Image Segmentation
    Wu, Huimin
    Li, Xiaomeng
    Cheng, Kwang-Ting
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (11) : 16589 - 16601
  • [44] Perturbation consistency and mutual information regularization for semi-supervised semantic segmentation
    Wu, Yulin
    Liu, Chang
    Chen, Lei
    Zhao, Dong
    Zheng, Qinghe
    Zhou, Hongchao
    MULTIMEDIA SYSTEMS, 2023, 29 (02) : 511 - 523
  • [45] Perturbation consistency and mutual information regularization for semi-supervised semantic segmentation
    Yulin Wu
    Chang Liu
    Lei Chen
    Dong Zhao
    Qinghe Zheng
    Hongchao Zhou
    Multimedia Systems, 2023, 29 : 511 - 523
  • [46] Semi-supervised Medical Image Segmentation with Strong/Weak Task-Aware Consistency
    Wang, Hua
    Liu, Linwei
    Lin, Yiming
    Hu, Jingfei
    Zhang, Jicong
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2024, PT XIV, 2025, 15044 : 17 - 31
  • [47] Multi-consistency for semi-supervised medical image segmentation via diffusion models
    Chen, Yunzhu
    Liu, Yang
    Lu, Manti
    Fu, Liyao
    Yang, Feng
    PATTERN RECOGNITION, 2025, 161
  • [48] Cross Prompting Consistency with Segment Anything Model for Semi-supervised Medical Image Segmentation
    Miao, Juzheng
    Chen, Cheng
    Zhang, Keli
    Chuai, Jie
    Li, Quanzheng
    Heng, Pheng-Ann
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2024, PT XI, 2024, 15011 : 167 - 177
  • [49] Semi-Supervised Unpaired Medical Image Segmentation Through Task-Affinity Consistency
    Chen, Jingkun
    Zhang, Jianguo
    Debattista, Kurt
    Han, Jungong
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2023, 42 (03) : 594 - 605
  • [50] Consistency-Guided Differential Decoding for Enhancing Semi-Supervised Medical Image Segmentation
    Zeng, Qingjie
    Xie, Yutong
    Lu, Zilin
    Lu, Mengkang
    Zhang, Jingfeng
    Xia, Yong
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2025, 44 (01) : 44 - 56