Mutual consistency learning for semi-supervised medical image segmentation

被引:147
|
作者
Wu, Yicheng [1 ]
Ge, Zongyuan [2 ,3 ]
Zhang, Donghao [3 ]
Xu, Minfeng [4 ]
Zhang, Lei [4 ]
Xia, Yong [5 ]
Cai, Jianfei [1 ]
机构
[1] Monash Univ, Fac Informat Technol, Dept Data Sci & AI, Melbourne, Vic 3800, Australia
[2] Monash Univ, Monash Airdoc Res, Melbourne, Vic 3800, Australia
[3] Monash eRes Ctr, Monash Med AI, Melbourne, Vic 3800, Australia
[4] Alibaba Grp, DAMO Acad, Hangzhou 311121, Peoples R China
[5] Northwestern Polytech Univ, Natl Engn Lab Integrated AeroSp Ground Ocean Big, Sch Comp Sci & Engn, Xian 710072, Peoples R China
基金
中国国家自然科学基金;
关键词
Mutual consistency; Soft pseudo label; Semi-supervised learning; Medical image segmentation;
D O I
10.1016/j.media.2022.102530
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a novel mutual consistency network (MC-Net+) to effectively exploit the un-labeled data for semi-supervised medical image segmentation. The MC-Net+ model is motivated by the observation that deep models trained with limited annotations are prone to output highly uncertain and easily mis-classified predictions in the ambiguous regions (e.g., adhesive edges or thin branches) for med-ical image segmentation. Leveraging these challenging samples can make the semi-supervised segmenta-tion model training more effective. Therefore, our proposed MC-Net+ model consists of two new designs. First, the model contains one shared encoder and multiple slightly different decoders (i.e., using different up-sampling strategies). The statistical discrepancy of multiple decoders' outputs is computed to denote the model's uncertainty, which indicates the unlabeled hard regions. Second, we apply a novel mutual consistency constraint between one decoder's probability output and other decoders' soft pseudo labels. In this way, we minimize the discrepancy of multiple outputs (i.e., the model uncertainty) during training and force the model to generate invariant results in such challenging regions, aiming at regularizing the model training. We compared the segmentation results of our MC-Net+ model with five state-of-the-art semi-supervised approaches on three public medical datasets. Extension experiments with two standard semi-supervised settings demonstrate the superior performance of our model over other methods, which sets a new state of the art for semi-supervised medical image segmentation. Our code is released publicly at https://github.com/ycwu1997/MC-Net.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Semi-supervised Left Atrium Segmentation with Mutual Consistency Training
    Wu, Yicheng
    Xu, Minfeng
    Ge, Zongyuan
    Cai, Jianfei
    Zhang, Lei
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2021, PT II, 2021, 12902 : 297 - 306
  • [32] Dual consistency regularization with subjective logic for semi-supervised medical image segmentation
    Lu, Shanfu
    Yan, Ziye
    Chen, Wei
    Cheng, Tingting
    Zhang, Zijian
    Yang, Guang
    COMPUTERS IN BIOLOGY AND MEDICINE, 2024, 170
  • [33] AN EXCEEDINGLY SIMPLE CONSISTENCY REGULARIZATION METHOD FOR SEMI-SUPERVISED MEDICAL IMAGE SEGMENTATION
    Basak, Hritam
    Bhattacharya, Rajarshi
    Hussain, Rukhshanda
    Chatterjee, Agniv
    2022 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (IEEE ISBI 2022), 2022,
  • [34] Semi-supervised medical image segmentation via uncertainty rectified pyramid consistency
    Luo, Xiangde
    Wang, Guotai
    Liao, Wenjun
    Chen, Jieneng
    Song, Tao
    Chen, Yinan
    Zhang, Shichuan
    Metaxas, Dimitris N.
    Zhang, Shaoting
    MEDICAL IMAGE ANALYSIS, 2022, 80
  • [35] Semi-supervised Medical Image Segmentation through Dual-task Consistency
    Luo, Xiangde
    Chen, Jieneng
    Song, Tao
    Wang, Guotai
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 8801 - 8809
  • [36] Consistency learning with dynamic weighting and class-agnostic regularization for semi-supervised medical image segmentation
    Su, Jiawei
    Luo, Zhiming
    Lian, Sheng
    Lin, Dazhen
    Li, Shaozi
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 90
  • [37] Curriculum Consistency Learning and Multi-Scale Contrastive Constraint in Semi-Supervised Medical Image Segmentation
    Ding, Weizhen
    Li, Zhen
    BIOENGINEERING-BASEL, 2024, 11 (01):
  • [38] Semi-supervised Domain Adaptive Medical Image Segmentation Through Consistency Regularized Disentangled Contrastive Learning
    Basak, Hritam
    Yin, Zhaozheng
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2023, PT IV, 2023, 14223 : 260 - 270
  • [39] Semi-Supervised Metallographic Image Segmentation via Consistency Regularization and Contrastive Learning
    Chen, Fan
    Zhang, Yiming
    Guo, Yaolin
    Liu, Zhen
    Du, Shiyu
    IEEE ACCESS, 2023, 11 : 87398 - 87408
  • [40] Inherent Consistent Learning for Accurate Semi-supervised Medical Image Segmentation
    Zhu, Ye
    Yang, Jie
    Liu, Si-Qi
    Zhang, Ruimao
    MEDICAL IMAGING WITH DEEP LEARNING, VOL 227, 2023, 227 : 1581 - 1601