Fully analytic energy gradient in the fragment molecular orbital method

被引:89
|
作者
Nagata, Takeshi [1 ]
Brorsen, Kurt [2 ,3 ]
Fedorov, Dmitri G. [1 ]
Kitaura, Kazuo [1 ,4 ]
Gordon, Mark S. [2 ,3 ]
机构
[1] Natl Inst Adv Ind Sci & Technol, NRI, Tsukuba, Ibaraki 3058568, Japan
[2] US DOE, Ames Lab, Ames, IA 50011 USA
[3] Iowa State Univ, Dept Chem, Ames, IA 50011 USA
[4] Kyoto Univ, Grad Sch Pharmaceut Sci, Sakyo Ku, Kyoto 6068501, Japan
来源
JOURNAL OF CHEMICAL PHYSICS | 2011年 / 134卷 / 12期
基金
美国国家科学基金会;
关键词
DENSITY-FUNCTIONAL THEORY; POLARIZABLE CONTINUUM MODEL; DYNAMICS FMO-MD; AB-INITIO; FORCE-FIELD; PROTEIN-LIGAND; ENZYME CATALYSIS; LARGE SYSTEMS; SIMULATIONS; WATER;
D O I
10.1063/1.3568010
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The Z-vector equations are derived and implemented for solving the response term due to the external electrostatic potentials, and the corresponding contribution is added to the energy gradients in the framework of the fragment molecular orbital (FMO) method. To practically solve the equations for large molecules like proteins, the equations are decoupled by taking advantage of the local nature of fragments in the FMO method and establishing the self-consistent Z-vector method. The resulting gradients are compared with numerical gradients for the test molecular systems: (H2O)(64), alanine decamer, hydrated chignolin with the protein data bank (PDB) ID of 1UAO, and a Trp-cage miniprotein construct (PDB ID: 1L2Y). The computation time for calculating the response contribution is comparable to or less than that of the FMO self-consistent charge calculation. It is also shown that the energy gradients for the electrostatic dimer approximation are fully analytic, which significantly reduces the computational costs. The fully analytic FMO gradient is parallelized with an efficiency of about 98% on 32 nodes. (C) 2011 American Institute of Physics. [doi:10.1063/1.3568010]
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Calculations of large molecular systems with the fragment molecular orbital method
    Fedorov, Dmitri G.
    Kitaura, Kazuo
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2010, 239
  • [42] Three-Body Energy Decomposition Analysis Based on the Fragment Molecular Orbital Method
    Fedorov, Dmitri G.
    JOURNAL OF PHYSICAL CHEMISTRY A, 2020, 124 (24): : 4956 - 4971
  • [43] Molecular orbital of fragment molecular orbital method with Sakurai-Sugiura method on grid computing environment
    Nagashima, Umpei
    Watanabe, Toshio
    Inadomi, Yuichi
    Umeda, Hiroaki
    Ishimoto, Takayoshi
    Sakurai, Tetsuya
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2007, 233 : 21 - 21
  • [44] RI-MP2 Gradient Calculation of Large Molecules Using the Fragment Molecular Orbital Method
    Ishikawa, Takeshi
    Kuwata, Kazuo
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2012, 3 (03): : 375 - 379
  • [45] Fragment molecular orbital-based molecular dynamics (FMO-MD) method with MP2 gradient
    Mochizuki, Yuji
    Nakano, Tatsuya
    Komeiji, Yuto
    Yamashita, Katsumi
    Okiyama, Yoshio
    Yoshikawa, Hikaru
    Yamataka, Hiroshi
    CHEMICAL PHYSICS LETTERS, 2011, 504 (1-3) : 95 - 99
  • [46] Fragmentation of disulfide bonds in the fragment molecular orbital method
    Fedorov, Dmitri G.
    COMPUTATIONAL AND THEORETICAL CHEMISTRY, 2024, 1241
  • [47] The fragment molecular orbital method and understanding monomer polarization
    Churchill, Cassandra D. M.
    CHEMICAL PHYSICS LETTERS, 2012, 554 : 185 - 189
  • [48] Applications of the Fragment Molecular Orbital Method in Drug Discovery
    Ishikawa, Takeshi
    YAKUGAKU ZASSHI-JOURNAL OF THE PHARMACEUTICAL SOCIETY OF JAPAN, 2016, 136 (01): : 121 - 130
  • [49] Multilayer formulation of the fragment molecular orbital method (FMO)
    Fedorov, DG
    Ishida, T
    Kitaura, K
    JOURNAL OF PHYSICAL CHEMISTRY A, 2005, 109 (11): : 2638 - 2646
  • [50] Fragment Molecular Orbital method: Not just for proteins anymore
    Pruitt, Spencer R.
    Gordon, Mark S.
    Fedorov, Dmitri G.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 241