Fully analytic energy gradient in the fragment molecular orbital method

被引:89
|
作者
Nagata, Takeshi [1 ]
Brorsen, Kurt [2 ,3 ]
Fedorov, Dmitri G. [1 ]
Kitaura, Kazuo [1 ,4 ]
Gordon, Mark S. [2 ,3 ]
机构
[1] Natl Inst Adv Ind Sci & Technol, NRI, Tsukuba, Ibaraki 3058568, Japan
[2] US DOE, Ames Lab, Ames, IA 50011 USA
[3] Iowa State Univ, Dept Chem, Ames, IA 50011 USA
[4] Kyoto Univ, Grad Sch Pharmaceut Sci, Sakyo Ku, Kyoto 6068501, Japan
来源
JOURNAL OF CHEMICAL PHYSICS | 2011年 / 134卷 / 12期
基金
美国国家科学基金会;
关键词
DENSITY-FUNCTIONAL THEORY; POLARIZABLE CONTINUUM MODEL; DYNAMICS FMO-MD; AB-INITIO; FORCE-FIELD; PROTEIN-LIGAND; ENZYME CATALYSIS; LARGE SYSTEMS; SIMULATIONS; WATER;
D O I
10.1063/1.3568010
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The Z-vector equations are derived and implemented for solving the response term due to the external electrostatic potentials, and the corresponding contribution is added to the energy gradients in the framework of the fragment molecular orbital (FMO) method. To practically solve the equations for large molecules like proteins, the equations are decoupled by taking advantage of the local nature of fragments in the FMO method and establishing the self-consistent Z-vector method. The resulting gradients are compared with numerical gradients for the test molecular systems: (H2O)(64), alanine decamer, hydrated chignolin with the protein data bank (PDB) ID of 1UAO, and a Trp-cage miniprotein construct (PDB ID: 1L2Y). The computation time for calculating the response contribution is comparable to or less than that of the FMO self-consistent charge calculation. It is also shown that the energy gradients for the electrostatic dimer approximation are fully analytic, which significantly reduces the computational costs. The fully analytic FMO gradient is parallelized with an efficiency of about 98% on 32 nodes. (C) 2011 American Institute of Physics. [doi:10.1063/1.3568010]
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Analytic Gradient for Time-Dependent Density Functional Theory Combined with the Fragment Molecular Orbital Method
    Nakata, Hiroya
    Fedorov, Dmitri G.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2023, 19 (04) : 1276 - 1285
  • [22] Fragment molecular orbital method: analytical energy gradients
    Kitaura, K
    Sugiki, SI
    Nakano, T
    Komeiji, Y
    Uebayasi, M
    CHEMICAL PHYSICS LETTERS, 2001, 336 (1-2) : 163 - 170
  • [23] Analytic Second Derivatives for the Efficient Electrostatic Embedding in the Fragment Molecular Orbital Method
    Nakata, Hiroya
    Fedorov, Dmitri G.
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2018, 39 (25) : 2039 - 2050
  • [24] Effective Fragment Molecular Orbital Method: A Merger of the Effective Fragment Potential and Fragment Molecular Orbital Methods
    Steinmann, Casper
    Fedorov, Dmitri G.
    Jensen, Jan H.
    JOURNAL OF PHYSICAL CHEMISTRY A, 2010, 114 (33): : 8705 - 8712
  • [25] Analytic second derivative of the energy for density functional theory based on the three-body fragment molecular orbital method
    Nakata, Hiroya
    Fedorov, Dmitri G.
    Zahariev, Federico
    Schmidt, Michael W.
    Kitaura, Kazuo
    Gordon, Mark S.
    Nakamura, Shinichiro
    JOURNAL OF CHEMICAL PHYSICS, 2015, 142 (12):
  • [26] Analytic second derivative of the energy for density-functional tight-binding combined with the fragment molecular orbital method
    Nakata, Hiroya
    Nishimoto, Yoshio
    Fedorov, Dmitri G.
    JOURNAL OF CHEMICAL PHYSICS, 2016, 145 (04):
  • [27] A combined effective fragment potential-fragment molecular orbital method. II. Analytic gradient and application to the geometry optimization of solvated tetraglycine and chignolin
    Nagata, Takeshi
    Fedorov, Dmitri G.
    Sawada, Toshihiko
    Kitaura, Kazuo
    Gordon, Mark S.
    JOURNAL OF CHEMICAL PHYSICS, 2011, 134 (03):
  • [28] Free Energy Decomposition Analysis Based on the Fragment Molecular Orbital Method
    Fedorov, Dmitri G.
    Nakamura, Taiji
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2022, 13 (06): : 1596 - 1601
  • [29] Energy Decomposition Analysis in Solution Based on the Fragment Molecular Orbital Method
    Fedorov, Dmitri G.
    Kitaura, Kazuo
    JOURNAL OF PHYSICAL CHEMISTRY A, 2012, 116 (01): : 704 - 719
  • [30] Analytic gradient for second order Moller-Plesset perturbation theory with the polarizable continuum model based on the fragment molecular orbital method
    Nagata, Takeshi
    Fedorov, Dmitri G.
    Li, Hui
    Kitaura, Kazuo
    JOURNAL OF CHEMICAL PHYSICS, 2012, 136 (20):