Fully analytic energy gradient in the fragment molecular orbital method

被引:89
|
作者
Nagata, Takeshi [1 ]
Brorsen, Kurt [2 ,3 ]
Fedorov, Dmitri G. [1 ]
Kitaura, Kazuo [1 ,4 ]
Gordon, Mark S. [2 ,3 ]
机构
[1] Natl Inst Adv Ind Sci & Technol, NRI, Tsukuba, Ibaraki 3058568, Japan
[2] US DOE, Ames Lab, Ames, IA 50011 USA
[3] Iowa State Univ, Dept Chem, Ames, IA 50011 USA
[4] Kyoto Univ, Grad Sch Pharmaceut Sci, Sakyo Ku, Kyoto 6068501, Japan
来源
JOURNAL OF CHEMICAL PHYSICS | 2011年 / 134卷 / 12期
基金
美国国家科学基金会;
关键词
DENSITY-FUNCTIONAL THEORY; POLARIZABLE CONTINUUM MODEL; DYNAMICS FMO-MD; AB-INITIO; FORCE-FIELD; PROTEIN-LIGAND; ENZYME CATALYSIS; LARGE SYSTEMS; SIMULATIONS; WATER;
D O I
10.1063/1.3568010
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The Z-vector equations are derived and implemented for solving the response term due to the external electrostatic potentials, and the corresponding contribution is added to the energy gradients in the framework of the fragment molecular orbital (FMO) method. To practically solve the equations for large molecules like proteins, the equations are decoupled by taking advantage of the local nature of fragments in the FMO method and establishing the self-consistent Z-vector method. The resulting gradients are compared with numerical gradients for the test molecular systems: (H2O)(64), alanine decamer, hydrated chignolin with the protein data bank (PDB) ID of 1UAO, and a Trp-cage miniprotein construct (PDB ID: 1L2Y). The computation time for calculating the response contribution is comparable to or less than that of the FMO self-consistent charge calculation. It is also shown that the energy gradients for the electrostatic dimer approximation are fully analytic, which significantly reduces the computational costs. The fully analytic FMO gradient is parallelized with an efficiency of about 98% on 32 nodes. (C) 2011 American Institute of Physics. [doi:10.1063/1.3568010]
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Definition of molecular orbitals in fragment molecular orbital method
    Inadomi, Y
    Nakano, T
    Kitaura, K
    Nagashima, U
    CHEMICAL PHYSICS LETTERS, 2002, 364 (1-2) : 139 - 143
  • [32] Accuracy of the fragment molecular orbital (FMO) calculations for DNA: Total energy, molecular orbital, and inter-fragment interaction energy
    Fukuzawa, Kaori
    Watanabe, Chiduru
    Kurisaki, Ikuo
    Taguchi, Naoki
    Mochizuki, Yuji
    Nakano, Tatsuya
    Tanaka, Shigenori
    Komeiji, Yuto
    COMPUTATIONAL AND THEORETICAL CHEMISTRY, 2014, 1034 : 7 - 16
  • [33] Random matrix theory for an inter-fragment interaction energy matrix in fragment molecular orbital method
    Yamanaka, Masanori
    CHEM-BIO INFORMATICS JOURNAL, 2018, 18 : 123 - 153
  • [34] Polarization energies in the fragment molecular orbital method
    Fedorov, Dmitri G.
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2022, 43 (16) : 1094 - 1103
  • [35] Exploring chemistry with the fragment molecular orbital method
    Fedorov, Dmitri G.
    Nagata, Takeshi
    Kitaura, Kazuo
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2012, 14 (21) : 7562 - 7577
  • [36] Acceleration of fragment molecular orbital method with GPUs
    Koga, Ryota
    Furukawa, Yuki
    Yasuda, Koji
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 241
  • [37] Fragment molecular orbital method: application to polypeptides
    Nakano, T
    Kaminuma, T
    Sato, T
    Akiyama, Y
    Uebayasi, M
    Kitaura, K
    CHEMICAL PHYSICS LETTERS, 2000, 318 (06) : 614 - 618
  • [38] Recent development of the fragment molecular orbital method
    Kitaura, Kazuo
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 241
  • [39] Diffusion energy profiles in silica mesoporous molecular sieves modelled with the fragment molecular orbital method
    Roskop, Luke
    Fedorov, Dmitri G.
    Gordon, Mark S.
    MOLECULAR PHYSICS, 2013, 111 (9-11) : 1622 - 1629
  • [40] IMPLEMENTATION OF THE ANALYTICAL ENERGY GRADIENT METHOD IN THE NUCLEAR AND ELECTRONIC MOLECULAR ORBITAL THEORY
    Gonzalez, Sergio A.
    Reyes, Andres
    REVISTA COLOMBIANA DE QUIMICA, 2009, 38 (01): : 117 - 125