Three-Body Energy Decomposition Analysis Based on the Fragment Molecular Orbital Method

被引:21
|
作者
Fedorov, Dmitri G. [1 ]
机构
[1] Natl Inst Adv Ind Sci & Technol, Res Ctr Computat Design Adv Funct Mat CD FMat, Tsukuba, Ibaraki 3058568, Japan
来源
JOURNAL OF PHYSICAL CHEMISTRY A | 2020年 / 124卷 / 24期
关键词
FUNCTIONAL TIGHT-BINDING; ACCURATE CALCULATIONS; DYNAMICS SIMULATIONS; QUANTUM-CHEMISTRY; FMO CALCULATIONS; WATER CLUSTERS; X-RAY; IONS; PAIR; POTASSIUM;
D O I
10.1021/acs.jpca.0c03085
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
An energy decomposition analysis is developed for the three-body expansion of the fragment molecular orbital method at the level of density functional theory, density-functional tight-binding, coupled cluster, and other quantum-mechanical approaches in vacuum and solution. It is shown that the addition of three-body terms improves the accuracy of the components and the total energies. For a compact representation, three-body corrections can be incorporated into two-body interactions to reduce the complexity of the analysis. The method is applied to solvated alkali and halide ions, a nanocrystal of ice, and a Trp-cage protein (PDB: 1L2Y)-ligand complex.
引用
收藏
页码:4956 / 4971
页数:16
相关论文
共 50 条
  • [1] The importance of three-body terms in the fragment molecular orbital method
    Fedorov, DG
    Kitaura, K
    JOURNAL OF CHEMICAL PHYSICS, 2004, 120 (15): : 6832 - 6840
  • [2] Electronic excitation energy calculation by the fragment molecular orbital method with three-body effects
    Chiba, Mahito
    Koido, Tetsuya
    JOURNAL OF CHEMICAL PHYSICS, 2010, 133 (04):
  • [3] Analytic second derivative of the energy for density functional theory based on the three-body fragment molecular orbital method
    Nakata, Hiroya
    Fedorov, Dmitri G.
    Zahariev, Federico
    Schmidt, Michael W.
    Kitaura, Kazuo
    Gordon, Mark S.
    Nakamura, Shinichiro
    JOURNAL OF CHEMICAL PHYSICS, 2015, 142 (12):
  • [4] Free Energy Decomposition Analysis Based on the Fragment Molecular Orbital Method
    Fedorov, Dmitri G.
    Nakamura, Taiji
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2022, 13 (06): : 1596 - 1601
  • [5] Energy Decomposition Analysis in Solution Based on the Fragment Molecular Orbital Method
    Fedorov, Dmitri G.
    Kitaura, Kazuo
    JOURNAL OF PHYSICAL CHEMISTRY A, 2012, 116 (01): : 704 - 719
  • [6] The three-body fragment molecular orbital method for accurate calculations of large systems
    Fedorov, Dmitri G.
    Kitaura, Kazuo
    CHEMICAL PHYSICS LETTERS, 2006, 433 (1-3) : 182 - 187
  • [7] Importance of Three-Body Interactions in Molecular Dynamics Simulations of Water Demonstrated with the Fragment Molecular Orbital Method
    Pruitt, Spencer R.
    Nakata, Hiroya
    Nagata, Takeshi
    Mayes, Maricris
    Alexeev, Yuri
    Fletcher, Graham
    Fedorov, Dmitri G.
    Kitaura, Kazuo
    Gordon, Mark S.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2016, 12 (04) : 1423 - 1435
  • [8] Accuracy of the three-body fragment molecular orbital method applied to Moller-Plesset perturbation theory
    Fedorov, Dmitri G.
    Ishimura, Kazuya
    Ishida, Toyokazu
    Kitaura, Kazuo
    Pulay, Peter
    Nagase, Shigeru
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2007, 28 (09) : 1476 - 1484
  • [9] Decomposition Analysis for Visualization of Noncovalent Interactions Based on the Fragment Molecular Orbital Method
    Fedorov, Dmitri G.
    Inostroza, Diego
    Courbiere, Bastien
    Guegan, Frederic
    Contreras-Garcia, Julia
    Mori, Seiji
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2025,
  • [10] Enhancement of energy decomposition analysis in fragment molecular orbital calculations
    Matsuoka, Sota
    Sakakura, Kota
    Akinaga, Yoshinobu
    Akisawa, Kazuki
    Okuwaki, Koji
    Doi, Hideo
    Mochizuki, Yuji
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2024, 45 (12) : 898 - 902