Three-Body Energy Decomposition Analysis Based on the Fragment Molecular Orbital Method

被引:21
|
作者
Fedorov, Dmitri G. [1 ]
机构
[1] Natl Inst Adv Ind Sci & Technol, Res Ctr Computat Design Adv Funct Mat CD FMat, Tsukuba, Ibaraki 3058568, Japan
来源
JOURNAL OF PHYSICAL CHEMISTRY A | 2020年 / 124卷 / 24期
关键词
FUNCTIONAL TIGHT-BINDING; ACCURATE CALCULATIONS; DYNAMICS SIMULATIONS; QUANTUM-CHEMISTRY; FMO CALCULATIONS; WATER CLUSTERS; X-RAY; IONS; PAIR; POTASSIUM;
D O I
10.1021/acs.jpca.0c03085
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
An energy decomposition analysis is developed for the three-body expansion of the fragment molecular orbital method at the level of density functional theory, density-functional tight-binding, coupled cluster, and other quantum-mechanical approaches in vacuum and solution. It is shown that the addition of three-body terms improves the accuracy of the components and the total energies. For a compact representation, three-body corrections can be incorporated into two-body interactions to reduce the complexity of the analysis. The method is applied to solvated alkali and halide ions, a nanocrystal of ice, and a Trp-cage protein (PDB: 1L2Y)-ligand complex.
引用
收藏
页码:4956 / 4971
页数:16
相关论文
共 50 条
  • [31] Evolution of planetesimal velocities based on three-body orbital integrations and growth of protoplanets
    Ohtsuki, K
    Stewart, GR
    Ida, S
    ICARUS, 2002, 155 (02) : 436 - 453
  • [32] Many-body expansion of the Fock matrix in the fragment molecular orbital method
    Fedorov, Dmitri G.
    Kitaura, Kazuo
    JOURNAL OF CHEMICAL PHYSICS, 2017, 147 (10):
  • [33] Importance of the hybrid orbital operator derivative term for the energy gradient in the fragment molecular orbital method
    Nagata, Takeshi
    Fedorov, Dmitri G.
    Kitaura, Kazuo
    CHEMICAL PHYSICS LETTERS, 2010, 492 (4-6) : 302 - 308
  • [34] A cyclic force decomposition algorithm for parallelising three-body interactions in molecular dynamics simulations
    Li, Jianhui
    Zhou, Zhongwu
    Sadus, Richard. J.
    FIRST INTERNATIONAL MULTI-SYMPOSIUMS ON COMPUTER AND COMPUTATIONAL SCIENCES (IMSCCS 2006), PROCEEDINGS, VOL 1, 2006, : 338 - +
  • [35] Modified force decomposition algorithms for calculating three-body interactions via molecular dynamics
    Li, Jianhui
    Zhou, Zhongwu
    Sadus, Richard J.
    COMPUTER PHYSICS COMMUNICATIONS, 2006, 175 (11-12) : 683 - 691
  • [36] Three-Body Decays: Structure, Decay Mechanism and Fragment Properties
    R. Álvarez-Rodríguez
    A. S. Jensen
    E. Garrido
    D. V. Fedorov
    H. O. U. Fynbo
    O. S. Kirsebom
    Few-Body Systems, 2009, 45 : 149 - 152
  • [37] Three-Body Decays: Structure, Decay Mechanism and Fragment Properties
    Alvarez-Rodriguez, R.
    Jensen, A. S.
    Garrido, E.
    Fedorov, D. V.
    Fynbo, H. O. U.
    Kirsebom, O. S.
    FEW-BODY SYSTEMS, 2009, 45 (2-4) : 149 - 152
  • [38] Dalitz-plot decomposition for three-body decays
    Mikhasenko, M.
    Albaladejo, M.
    Bibrzycki, L.
    Fernandez-Ramirez, C.
    Mathieu, V.
    Mitchell, S.
    Pappagallo, M.
    Pilloni, A.
    Winney, D.
    Skwarnicki, T.
    Szczepaniak, A. P.
    PHYSICAL REVIEW D, 2020, 101 (03)
  • [39] Definition of molecular orbitals in fragment molecular orbital method
    Inadomi, Y
    Nakano, T
    Kitaura, K
    Nagashima, U
    CHEMICAL PHYSICS LETTERS, 2002, 364 (1-2) : 139 - 143
  • [40] Unrestricted Hartree-Fock based on the fragment molecular orbital method: Energy and its analytic gradient
    Nakata, Hiroya
    Fedorov, Dmitri G.
    Nagata, Takeshi
    Yokojima, Satoshi
    Ogata, Koji
    Kitaura, Kazuo
    Nakamura, Shinichiro
    JOURNAL OF CHEMICAL PHYSICS, 2012, 137 (04): : 044110